MACHEREY-NAGEL

Rapid Tests

Welcome

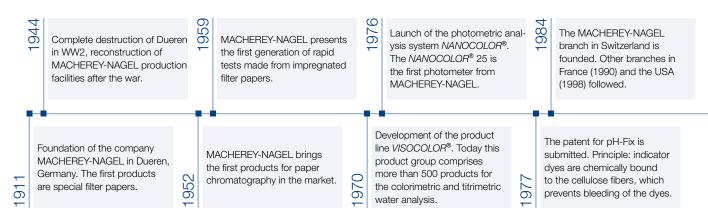
Dear reader,

we are very pleased to announce the arrival of our new rapid tests catalog, that was updated with our latest products.

All of our tests can be found listed by parameters in the first part of the catalog. So you can directly find the correct test for your needs. In the second part of the catalog we have compiled additional details for each individual test and equipment for you.

We are a successful manufacturer of water analysis- and rapid tests for more than 60 years. A continuous development has always been important to us to meet your today's and future needs.

If you have further questions or need additional advice, you can contact us at any time. Our friendly team of experts in Dueren and our competent sales team are very happy to be at your service.


Technical Support and Customer Service

Telephone: +49 24 21 969-332
E-mail: csc@mn-net.com
Homepage: www.mn-net.com

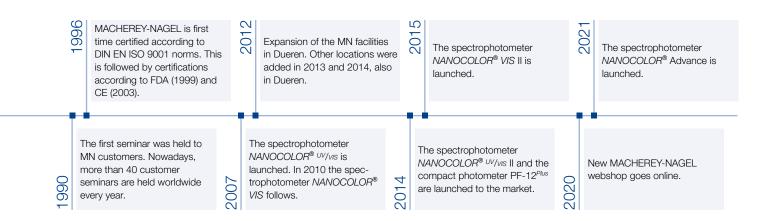
Enjoy our new catalog; we are pleased to listen to your feedback!

Your Water Analysis team

Timeline MACHEREY-NAGEL

MACHEREY-NAGEL

MACHEREY-NAGEL was founded in 1911 in Dueren (Germany) as a manufacturer of special filter papers. Since then we have established ourselves as one of the world's leading companies in the field of chemical and biomolecular analysis. In addition to our product lines for rapid tests and water analysis we offer a wide selection of products for filtration, chromatography and bioanalysis.


We are able to look back on decades of experience in the field of rapid tests and water analysis. In the 1950s we launched the first generation of rapid tests, in 1976 our first photometer. Over the years we have steadily refined and improved our products. This makes us one of the leading and most reliable manufacturers for water analysis.

Our headquarters are located in Dueren. Our commercial and administrative areas, research and development departments as well as our productions are based there. In addition we run three branches in Switzerland, France and the USA with more than 600 employees. Furthermore, a globally operating network of qualified and specially trained distributors in more than 150 countries, ensure worldwide availability of MN products and services.

As a privately owned company, the term family is of highest importance to us. We understand all customers as part of the MN family – our philosophy of a successful, trusting, and long term cooperation. This fundamental understanding of customer relationships goes hand in hand with our focus on quality. For more than 100 years, our customers can rely on products "Made in Germany". From conviction, we think and act in the long term.

Our personal service offers wealth of expertise and friendly advise, which creates an additional value for our customers. From the initial contact throughout the entire lifetime of our products, our employees are available for customers and offer advise and support.

MACHERERY-NAGEL offers a unique combination of expertise and partnership, which makes cooperation for you very successful and pleasant.

Overview	6
Measuring ranges	6
Application areas	8
NANOCOLOR® photometers	12
NANOCOLOR® heating blocks	14
Analytical quality assurance	16
Platforms	18
	0.0
Parameters A–Z	20
Test papers and test strips	50
pH tests	
Semi-quantitative test strips	60
Qualitative test papers	68
Visual test kits	
VISOCOLOR®	74
Photometric tests	96
NANOCOLOR®	
NANOCOLOR	88
Microbiological tests	116
D: F: ®	

Devices	122
Photometers	124
Heating blocks	144
Reflectometer	154
Luminometer	156
Mobile mini-labs	158
Reagent cases	160
Index of catalog numbers	168
Legal notices	

Measuring ranges

0.1 mg/L 0.001 mg/L 0.01 mg/L 1 mg/L VISOCOLOR® alpha includes colorimetric and titrimetric tests. These are evaluated visually by comparison with a color scale or drop counting. Through the use of mixed reagents often only one reagent is required. VISOCOLOR® ECO are colorimetric and titrimetric tests that are evaluated by comparison with a color scale or drop counting. Single reagents enable accurate analysis of water ingredients. VISOCOLOR® HE are highly sensitive colorimetric and titrimetric tests. Their sensitivity is achieved by using longer measurement tubes and highly sensitive reagents. VISOCOLOR® Powder Pillows Are individually packaged reagents which contain the exactly needed amount for a determination. They enable easiest dosing of reagents. NANOCOLOR® standard tests are evaluated in cells with up to 50 mm layer thickness.

Thereby highest accuracy and precision can be reached. An extremely broad measuring range can be covered.

10 mg/L 100 mg/L 1000 mg/L 10000 mg/L

Qualitative test papers

serve to check the presence or absence of chemical compounds. A change in color indicates that the concentration of the tested substance is above the detection limit.

QUANTOFIX® tests trips

enable semi-quantitative determinations of a variety of parameters. They can be used immediately. No additional accessories are required.

NANOCOLOR® tube tests

contain already pre-dosed reagents, whereby a high safety and measurement accuracy is achieved. The measurement is carried out by photometry in a test tube.

NANOCOLOR® ECO reagent kits

contain all reagents needed for the test performance and evaluation in round test tubes. They can also be transferred to 50 mm cells to achieve lower detection limits.

	,	(1)		/ /	<u>,</u> ,	//	/		/, /	/
	KEN SE INC.	Sol Sol Sol	denigos Heneros	de dicolico	Medicular Medicular	On we want	o ningled was	to doing to be	tood industry	
Parameter	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ 53			Mr. ilio	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 4 4°	/ 8º	/ 40	
Alkalinity			•						_	
Aluminum			•		•				-	
Ammonium	-	-			•	-	-		-	
AOX					-		-			
BOD ₅				-			-			
Bromine										
Cadmium					-				•	
Calcium		-								
Carbonate hardness										
Chlorine dioxide										
Chloride			-						-	
Chlorine			-							
Chromium / Chromate										
Cobalt										
COD					-					
Color			-		-					
Copper										
Cyanide										
Cyanuric acid										
DEHA										
Detergents										
Ethanol										
Fluoride										
Formaldehyde										
Hydrazine										
Hydrocarbons										
Iron										
Lead										
Magnesium										
Manganese										
Methanol										
Molybdenum										
Nickel										
Nitrate		-					-			
Nitrite										
Organic acids	_				_					
Organic complexing agents						_	_		_	
Oxygen										
Ozone	_		_					_		
Peroxides			-	-						
	_	-				_	_			
pH		•	-		-	-	-	•	-	
Phenols										

, W	Leafted include	cso make	Sitoconos	. Qaga indist	digital digital	Smithing of	SOE NORTH THE TENE	division not be division of the second		Control of the contro
Lardille	\ egitte	88 N	Sural	Que Con	Skatt Anstr	Swift	10 tille	Oinki	Course, disper	(Aprill,
/	/		/	/	/	/				Alkalinity
										Aluminum
										Ammonium
										AOX
										BOD ₅
										Bromine
-										Cadmium
				-						Calcium
			-	-		-	-			Carbonate hardness
						-		-		Chlorine dioxide
	-		-		-					Chloride
										Chlorine
										Chromium / Chromate
			-							Cobalt
-										COD
										Color
										Copper
										Cyanide
										Cyanuric acid
										DEHA
	-		-							Detergents
										Ethanol
										Fluoride
										Formaldehyde
										Hydrazine
										Hydrocarbons
			•							Iron
-					•					Lead
										Magnesium
										Manganese
										Methanol
										Molybdenum
-										Nickel
	•		•		•				•	Nitrate
										Nitrite
				-						Organic acids
			-							Organic complexing agents
										Oxygen
				-		-		-		Ozone
	-	-	-	-	-	-		-		Peroxide
	-	-	-	-	-	-	-	-	-	рН
-										PhenoIs

	ka k		die die sie sie sie sie sie sie sie sie sie s	the lied in the	Wildright Control of the Control of		S MINITED TO SERVICE T	Bolletelan	get Lood in detre	,
Parameter Phosphate	bo. for	/ %	<i>\</i>	\ \(\text{O} \)	Mr. ilip	/ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<u> </u>		
POC	-	-	-		-	-	-			
Potassium									-	
Residual hardness								-		
Silica										
Silver										
Starch										
Sulfate			-							
Sulfide										
Sulfite										
Surfactants					-					
Thiocyanate										
Tin										
TOC										
total Hardness										
total Nitrogen				•	-	•	-			
TTC						•				
Turbidity										
Zinc										

/			/		/		/	/		<u> </u>
Jandin's	e ditter indus	So was	Sitioge Mig	2000 judist	Startagist	Swiftling	os lindistr	Ointino mic	Se de la companya de	S idi
/								,		Phosphate
										POC
		-					-			Potassium
		-	-	-	-					Residual hardness
		-								Silica
										Silver
										Starch
		-							-	Sulfate
	-	-	-				-			Sulfide
										Sulfite
				-						Surfactants
				-						Thiocyanate
		-								Tin
-	-	-	-		-					TOC
	-	-	-	-				-	-	total Hardness
		-	-		-					total Nitrogen
										TTC
					-	-		-		Turbidity
										Zinc

NANOCOLOR® photometers

Water analysis made easy

NANOCOLOR® photometers by MACHEREY-NAGEL are universally applicable in all areas of water and waste water analysis. In addition to the analysis of urban and industrial waste water, drinking water, process water, surface water, ground water as well as cooling and boiler feed water, NANOCOLOR® photometers can also be used for quality control in various industries such as food and beverage industry. The complete analysis can be performed reliably and quickly with just one device. In addition to the standard methods, NANOCOLOR® photometers can also be used for special applications such as color measurements.

Overview

Photometer	REF	Туре	Wavelengths	Wavelength accuracy	Spectral bandwidth	Operation	Display	Data memory 1)	Platform ²⁾
■ NANOCOLOR® VIS II	919650	Spectro- photometer	320–1100 nm	± 1 nm	< 4 nm	Touch screen	HD LCD	5000	TT, ST, RK, PP
■ NANOCOLOR® UV/vis II	919600	Spectro- photometer	190–1100 nm	± 1 nm	< 2 nm	Touch screen	HD LCD	5000	TT, ST, RK, PP
■ <i>NANOCOLOR®</i> Advance	919750	Spectro- photometer	340–800 nm	± 2 nm	< 4 nm	Touch screen	Backlit display	1000	TT, ST, RK, PP, CO
■ PF-12 ^{Plus}	919250	Filter- photometer	7 (+ 1)	± 2 nm	10–12 nm	Plastic foil keyboard	Graphic display	1000	TT, CO, PP, RK
■ PF-3 COD	919342	LED filter- photometer	3	± 2 nm	10–12 nm	Plastic foil keyboard	Graphic display	50	π
■ PF-3 Drinking Water	919343	LED filter- photometer	3	± 2 nm	10–12 nm	Plastic foil keyboard	Graphic display	50	TT, CO, PP
■ PF-3 Fish	919345	LED filter- photometer	3	± 2 nm	10–12 nm	Plastic foil keyboard	Graphic display	50	TT, CO, PP
■ PF-3 Pool	919340	LED filter- photometer	3	± 2 nm	10–12 nm	Plastic foil keyboard	Graphic display	50	TT, CO, PP
■ PF-3 Soil	919341	LED filter- photometer	3	± 2 nm	10–12 nm	Plastic foil keyboard	Graphic display	50	TT, CO, PP

¹⁾ Number of measurements in data memory refers to measurement results of cuvette tests. For further information about data memory of the in ²⁾CO: Colorimetric tests - only VISOCOLOR® ECO/PP: VISOCOLOR® Powder Pillows/TT: NANOCOLOR® tube tests/ST: NANOCOLOR® star

O BO TO	And ite	Q & S	State of the state	t day of the state	Mails of Mails	Residence of the second	Stood of the Color	A SA	nit with	/kg	and crude de la company de la
										•	
											PETENO PROPERTY IN
-	•		-	-	-				-		
-	-		-	-	-				-		F-50
-	-		-	-	-				-		
-	-		-	-	-				-		
•			•	•	•				•		

nstruments please see the respective manual. ndard tests/RK: *NANOCOLOR® ECO* reagent kits

NANOCOLOR® heating blocks

Reliable sample digestion for photometric analysis

An important step in the sample preparation for photometric water analysis is the thermal decomposition of the water sample. The heating blocks NANOCOLOR® VARIO 4 and NANOCOLOR® VARIO C2 allow a fast and safe performance of all required sample digestions in the water and wastewater analysis.

Within of metal analysis, the NANOCOLOR® VARIO C2 M can be used for the digestion of larger sample volumes. This heating block has two 22 mm and eight 16 mm bores for the digestion of large sample volumes.

The NANOCOLOR® VARIO HC has an integrated active cooling which enables an extremely short cooling time. Thereby, an even faster digestion is possible which means a significant time saving.

The NANOCOLOR® VARIO Mini is a compact heating block, which is suitable for mobile analytics due to its size.

Overview

Heating block	REF	Parallel digestions	Heating units	Bores 16 mm	Bores 22 mm	Warm-up time (25 °C → 160 °C)	Temperature range	Operation
■ NANOCOLOR® VARIO 4	919300	24	2	24	-	10 min	40-160 °C	Touch screen
■ NANOCOLOR® VARIO C2	919350	12	1	12	-	10 min	40–160 °C	Touch screen
■ NANOCOLOR® VARIO C2 M	919350.1	10	1	8	2	10 min	40–160 °C	Touch screen
■ NANOCOLOR® VARIO Mini	919380	6	1	6	-	25 min	70–160°C	Plastic foil keyboard
■ NANOCOLOR® VARIO HC	919330	12	1	12	-	10 min	40–160 °C	Touch screen

Display	Qr. dist	Nation of the state of the stat	Oldinos Aury	To togg	il coliff	Andie Modie	Mairis	Resident Market State of the St		min Signal Signa	Sp Sign	. Indiana da
LCD												
LCD												
LCD												
Graphic display			ŀ	i			ŀ					
LCD	•	-			-		•		•		-	

Analytical quality assurance

IQC (Internal quality control)

Operating methods have become an approved way of system control and monitoring. The fundamental advantage is the rapid information compared to the instrumentally complex and time consuming standard methods. Further benefits are the lower demand of reagents, lower costs as well as a rapid performance of the test. The use of operating methods can reduce the amount of reference methods significantly.

Internal quality control serves for the verification of the whole analytical system. This accounts for the reagents and test kits, the devices which are used for analysis as well as for the personal performance. IQC is important in order to ensure correct results and to fulfill validation requirements. Several measures can be used for internal quality control and are described on the following pages.

Multiple determinations

With multiple determinations the precision of a measurement can be checked. Outliers are detected immediately and tendencies or scatters become visible.

Products for quality assurance

Applicable for all NANOCOLOR® tests

Standard measurements

By regular standard measurements, the way you work and the overall analysis system can be checked. In this case, a standard solution with a known concentration of a parameter is investigated.

Products for quality assurance

NANOCONTROL single and multi standards

Plausibility checks by dilution and standard addition

Dilutions and standard additions are suitable procedures to safeguard measurement values. These methods are employed when there are doubts about the accuracy of results.

Products for quality assurance

NANOCONTROL standard addition

Parallel measurements

In parallel measurements a sample is measured simultaneously with internal operational analysis and in an external independent laboratory. This results in a direct comparison. The measurement results should thereby be safeguarded by multiple determinations.

Products for quality assurance

Applicable for all NANOCOLOR® tests

Inspection equipment monitoring (photometer/heating blocks)

In the inspection equipment monitoring all devices which are used in the operational analysis, are monitored and tested (e.g. photometers, heating blocks and pipettes). This is done by appropriate means for

Products for quality assurance

NANOCONTROL NANOCHECK 2.0 NANOCONTROL NANOTURB NANOCOLOR® T-Set and USB T-Set

Personal information sheet / training

The education and training of laboratory staff has become a high priority within internal quality control. The focus of training is the understanding of analytical correlations, and the detection of possible error sources.

Products for quality assurance

MN seminars (for free)

Platforms

Products for pH determination

For pH determination mainly test papers and test strips are used. By simply dipping the test strip into a solution, the pH value can be determined safely. The use of different indicators causes a color reaction on the test strip. In most cases the evaluation is carried out by a comparison with a color

Qualitative test papers

Qualitative test papers provide information on whether a particular substance is present or not. By immersing the test paper into the sample solution a color change occurs when the concentration of the investigated substance is above a specific detection limit.

Semi-quantitative tests strips

Test papers and test strips for semi-quantitative analysis are extremely simple to handle. They are based on the principle of "dip and read". They are available for a variety of parameters and comply with all requirements of a modern rapid test. The evaluation of these tests is carried out by a comparison with a color scale.

Colorimetric test kits

Colorimetric tests are based on a color development of the sample after the addition of reagents. The evaluation of these tests is carried out by a comparison with a color chart.

Titrimetric tests are based on the principle of the addition of reagent until a color change occurs. For the evaluation of these tests no separate color card is required. The amount of consumed reagent is directly related to the measured value.

Powder Pillows

Powder Pillows are individually packaged reagents and contain the exactly needed amount for a determination. The evaluation of these tests is carried out photometrically in 16 or 24 mm test tubes.

NANOCOLOR® tube tests

Tube tests are photometric rapid tests with pre-dosed reagents. The evaluation of these tests is carried out photometrically in 16 mm test tubes.

NANOCOLOR® standard tests

Standard tests are photometric reagent sets. They contain all the reagents necessary for the analysis. Evaluation is carried out photometrically in precision cells with up to 50 mm layer thickness.

Microbiological tests

Microbiological tests are based on enzymatic reaction or metabolic processes of bacteria. The evaluation of these tests is carried out with an oxygen probe or with the help of a luminometer.

NANOCOLOR® ECO reagent kits

NANOCOLOR® ECO reagent kits are photometric reagent sets containing all reagents necessary for the analysis. The tests are performed and evaluated directly in 16 mm or 24 mm test tubes. They can also be evaluated in 50 mm semi micro cells.

Acetic acid (CH₃COOH)

See Organic acids (page 40)

Acid binding capacity

See Alkalinity (page 23)

Acid capacity

See Alkalinity (page 23)

Acidity

Acidity is a measure for the amount of acid in water. It gives the amount of NaOH that needs to be added to cause a color change of the pH indicator phenolphthalein (pH = 8.2).

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® HE Acidity AC 7	TI	0.2–7.2 mmol/L H ⁺	200	915006

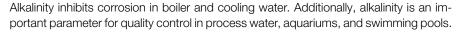
Active oxygen

"Active oxygen" and potassium monopersulfate (KMPS), respectively, is widely used as a green alternative to chlorine in the disinfection of swimming pools.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX [®] Active oxygen	HT	0 · 4 · 8 · 15 · 25 mg/L KMPS	100	91349

Air humidity (relative)

Products that are sensitive to moisture must be kept dry. To achieve this, such products are often packed in PE bags with a desiccant. Moisture indicators allow a simple, visual control whether the product is still kept dry. Conventional moisture indicators are based on cobalt chloride, which is classified as toxic and carcinogenic. The cobalt chloride-free moisture indicators do not contain toxic or carcinogenic substances.


Product	Platform	Measuring range	Number of tests	REF
■ Moisture indicator	HT	$20\cdot 30\cdot 40\cdot 50\cdot 60\cdot 70\cdot 80\%$ relative humidity	12	90801
■ Moisture indicator	QT	> 8 % relative humidity	1000	908805
Non-toxic moisture indicator without cobalt chloride	QT	> 8 % relative humidity	1000	908808

Alcohol

See Ethanol (page 32) and Methanol (page 37)

Alkalinity

Alkalinity is a measure for the buffer capacity of natural waters. It gives the amount of acid that needs to be added to cause a color change of the indicator methylorange (m-value, pH 4.3) or phenolphthalein (p-value, pH 8.2). Alkalinity is mainly caused by a combination of carbonate, bicarbonate, and hydroxide ions. If the alkalinity is high, the addition of acids or bases has only a little influence on the pH.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Carbonate hardness	HT	0 · 3.8 · 7.5 · 12.5 · 18.8 · 25.0 °e	100	91323
■ QUANTOFIX® LubriCheck	HT	0 · 15 · 50 · 75 · 130 · 200 mmol/L KOH	100	91336
Swimming pool test 3 in 1	HT	Free chlorine: $0 \cdot 0.5 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl_2 Alkalinity: $0 \cdot 80 \cdot 120 \cdot 180 \cdot 240$ mg/L CaCO_3 pH: $6.4 \cdot 6.8 \cdot 7.2 \cdot 7.6 \cdot 8.4$	50	90752
Swimming pool test 5 in 1	НТ	Total chlorine: $0 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl_2 Free chlorine: $0 \cdot 0.5 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl_2 Alkalinity: $0 \cdot 80 \cdot 120 \cdot 180 \cdot 240$ mg/L CaCO_3 Total hardness: $0 \cdot 100 \cdot 250 \cdot 500 \cdot 1000$ mg/L CaCO_3 pH: $6.4 \cdot 6.8 \cdot 7.2 \cdot 7.6 \cdot 8.4$	50	90759
■ VISOCOLOR® alpha Carbonate hardness	TI	1 drop equals 1.25 °e	100	935016
■ VISOCOLOR® ECO Alkalinity TA 2)	CO	5-250 mg/L CaCO ₃	100	931204
■ VISOCOLOR® ECO Carbonate hardness	TI	1 drop equals 1.25 °e	100	931014
■ VISOCOLOR® HE Alkalinity AL 7	TI	0.2–7.2 mmol/L OH ⁻	200	915007
■ VISOCOLOR® HE Carbonate hardness C20	TI	0.2–7.2 mmol/L H ⁺	200	915003
NANOCOLOR® Carbonate hardness 15	П	1.25-18.75 °e/0.4-5.4 mmol/L H ⁺	20	985015

Aluminum (Al³⁺)

Water-treatment plants use aluminum potassium sulfate (Alum) in order to flocculate suspended solids. The level of aluminum in finally treated drinking water may increase because of this process and therefore has to be tested. Depending on national regulations, different aluminum concentrations are tolerated in industrial effluents. In natural waters, the concentration of aluminum compounds is usually low.

Product	Platform	Measuring range	Number of tests	REF
Aluminum test paper	QT	$> 10 \text{ mg/L Al}^{3+}$	100	90721
QUANTOFIX® Aluminum	HT	0 · 5 · 20 · 50 · 200 · 500 mg/L Al ³⁺	100	91307
■ VISOCOLOR® ECO Aluminum	CO	0 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 · 0.40 · 0.50 mg/L Al ³⁺	50	931006
■ <i>NANOCOLOR</i> ® Aluminum 07	ТТ	0.02-0.70 mg/L Al ³⁺	19	985098
■ <i>NANOCOLOR</i> ® Aluminum	ST	0.01-1.00 mg/L Al ³⁺	250	91802

pH: Products for pH determination/QT: Qualitative test papers/HT: Semi-quantitative test strips/CO: Colorimetric test kits/TI: Titrimetric test kits/PP: Powder Pillows TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests / RK: NANOCOLOR® ECO reagent kits

Ammonia (NH₄+)

In surface and ground waters, ammonium ions are an indication for the decomposition of animal or vegetable matter. High ammonia concentrations in surface waters can indicate contamination from waste water treatment plants, fertilizer runoff, or industrial effluents. Excess ammonia levels are toxic to aquatic life.

Product	Platform	Measuring range	Number of tests	REF
Ammonium test paper	QT	> 10 mg/L NH ₄ ⁺	200	90722
Ammonia test	HT	$0 \cdot 0.5 \cdot 1 \cdot 3 \cdot 6 \text{ mg/L NH}_4^+$	25	90714
QUANTOFIX® Ammonium 3)	HT	$0\cdot 10\cdot 25\cdot 50\cdot 100\cdot 200\cdot 400~\text{mg/L NH}_4{}^+$	100	91315
■ VISOCOLOR® alpha Ammonium	CO	$0 \cdot 0.2 \cdot 0.5 \cdot 1 \cdot 2 \cdot 3 \text{ mg/L NH}_4^+$	50	935012
■ VISOCOLOR® ECO Ammonium 15 1)	CO	$0 \cdot 0.5 \cdot 1 \cdot 2 \cdot 3 \cdot 5 \cdot 7 \cdot 10 \cdot 15 \text{ mg/L NH}_{\scriptscriptstyle 4}{}^{\scriptscriptstyle +}$	50	931010
■ VISOCOLOR® ECO Ammonium 3 1)	CO	$0 \cdot 0.2 \cdot 0.3 \cdot 0.5 \cdot 0.7 \cdot 1 \cdot 2 \cdot 3 \text{ mg/L NH}_{4}^{+}$	50	931008
■ VISOCOLOR® HE Ammonium	CO	0.0 · 0.02 · 0.04 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 · 0.40 · 0.50 mg/L NH ₄ +	110	920006
■ VISOCOLOR® Powder Pillows Ammonium 4)	PP	0.03–0.80 mg/L NH ₄ -N	100	936229
■ <i>NANOCOLOR®</i> Ammonium 2000	П	300–1600 mg/L NH ₄ -N	20	985002
■ <i>NANOCOLOR®</i> Ammonium 200	тт	30–160 mg/L NH ₄ -N	20	985006
■ <i>NANOCOLOR®</i> Ammonium 100	П	4–80 mg/L NH ₄ -N	20	985008
■ NANOCOLOR® Ammonium 50	П	1–40 mg/L NH ₄ -N	20	985005
■ <i>NANOCOLOR®</i> Ammonium 10	П	0.2–8.0 mg/L NH ₄ -N	20	985004
■ NANOCOLOR® Ammonium 3	П	0.04–2.30 mg/L NH ₄ -N	20	985003
■ NANOCOLOR® Ammonium	ST	0.01–2.0 mg/L NH ₄ -N	100	91805
■ NANOCOLOR® ECO Ammonium	RK	0.010–1.80 mg/L NH ₄ -N	100	976003

¹⁾ Also suitable for photometrical evaluation on photometers PF-3, PF-12^{Flus} and/or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.
3) Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on QUANTOFIX® Relax can differ from visual range.
4) Only photometrically evaluable, with photometers NANOCOLOR® VIS II, NANOCOLOR® VIS II, NANOCOLOR® Advance, PF-3 and/or PF-12^{Plus}.

Anionic detergents

See Surfactants (detergents) (page 46)

Antimony (Sb³⁺)

Antimony is used in lead alloys, batteries, bullets, solder, pyrotechnics, and semiconductors.

Product	Platform	Measuring range	Number of tests	REF
Antimony test paper	QT	$> 5 \text{ mg/L Sb}^{3+}$	200	90723

AOX (adsorbable organically bound halogens)

AOX represents the sum of organically bound halogens (chlorine, bromine, iodine) which are adsorbable to a suitable adsorbent. It is an important parameter for the control of water quality and sludge. The result is given in mg/L chloride.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® AOX 3	П	0.01-3.0 mg/L AOX	20	985007

Aquarium parameters, multi test

The determination of total hardness, carbonate hardness (alkalinity) and pH provides a good overview on the water quality of an aquarium.

Product	Platform	Measuring range	Number of tests	REF
QUANTOFIX® Multistick for aquarium owners	HT	Total hardness: 0 · 6.3 · 12.5 · 18.8 · 25.0 · 31.3 °e Carbonate hardness: 0 · 3.8 · 7.5 · 12.5 · 18.8 · 25 °e pH: 6.4 · 6.8 · 7.2 · 7.6 · 8.0 · 8.4	100	91326
QUANTOFIX® Multistick for aquarium owners	HT	Total hardness: 0 · 6.3 · 12.5 · 18.8 · 25.0 · 31.3 °e Carbonate hardness: 0 · 3.8 · 7.5 · 12.5 · 18.8 · 25 °e pH: 6.4 · 6.8 · 7.2 · 7.6 · 8.0 · 8.4	25	91327

Arsenic (As^{3+/5+})

As a naturally occurring element, arsenic is widely distributed in the earth's crust. Organic arsenic compounds can be used as pesticides.

Arsenic is toxic and causes skin diseases, keratosis, and melanoma. Therefore, arsenic levels have to be monitored regularly in drinking water. The WHO recommends a limit for drinking water of 0.01 mg/L arsenic.

Product	Platform	Measuring range	Number of tests	REF
Arsenic test paper	QT	> 0.5 µg As	200	90762
QUANTOFIX® Arsenic 50	HT	0 · 0.05 · 0.1 · 0.5 · 1.0 · 1.7 · 3.0 mg/L As ^{3+/5+}	100	91332
QUANTOFIX® Arsenic 10	HT	0 · 0.01 · 0.025 · 0.05 · 0.1 · 0.5 mg/L As ^{3+/5+}	100	91334
■ QUANTOFIX® Arsenic Sensitive	HT	0 · 0.005 · 0.01 · 0.025 · 0.05 · 0.1 · 0.25 · 0.5 mg/L As ^{3+/5+}	100	91345
■ QUANTOFIX® EZ Arsenic Sensitive PP	HT	0 · 0.005 · 0.01 · 0.025 · 0.05 · 0.1 · 0.25 · 0.5 mg/L As³+/5+	100	91345.2

Ascorbic acid (vitamin C)

Ascorbic acid or vitamin C is found in many foods and vegetables. Often it is added to juice or fruits as stabilizing and reducing agent.

Product	Platform	Measuring range	Number of tests	REF		
■ QUANTOFIX® Ascorbic acid ³⁾	HT	0 · 50 · 100 · 200 · 300 · 500 · 700 · 1000 · 2000 mg/L vitamin C	100	91314		
3) Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on QUANTOFIX® Relax can differ from visual range.						

Biotoxicity / Bioluminescence

See Toxicity (page 47)

Bismuth (Bi3+)

Bismuth is present in lead and silver ores, and occasionally as the natural element. The metal is used in alloys of lead, tin, and cadmium, and in some pharmaceuticals.

Product	Platform	Measuring range	Number of tests	REF
■ Bismuth test paper	QT	$>$ 60 mg/L $\mathrm{Bi^{3+}}$	200	90733

Blood

The rapid detection of blood may be important in the investigation of evidence and crime scenes.

Product	Platform	Measuring range	Number of tests	REF
Peroxtesmo KM	QT	Traces of blood	25	90605

BOD (biological oxygen demand)

Together with the chemical oxygen demand (COD) the biological oxygen demand (BOD) represents one of the most important sum parameters for the evaluation of waste water pollution. BOD is defined as the amount of oxygen per volume, which is used by the microorganisms for oxidative degradation of organic substances in a water sample. The BOD_5 value is usually determined over a period of 5 days at 20 °C.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® BOD ₅ -TT	П	0.5 –3000 mg/L O_2	22	985825
■ NANOCOLOR® BOD ₅	Π	2–3000 mg/L O ₂	25–50	985822

Borate (boric acid, BO₃³-)

Borates are for example used in wood protection or as buffer substance (pH buffer). Perborates are used as bleaching agents in detergents.

Product	Platform	Measuring range	Number of tests	REF
■ Tumeric paper	QT	> 20 mg/L B	200	90747

Bromide (Br⁻)

See Chloride (page 27)

Bromine (Br₂)

Bromine is used as an alternative to chlorine in disinfection. It does not produce the typical swimming pool odor, is more effective than chlorine and less corrosive at higher pH values. Overdosing may cause irritation of skin, eyes and mucous membranes.

Product	Platform	Measuring range	Number of tests	REF
Chlortesmo	QT	$> 1 \text{ mg/L Cl}_2$	200	90603
■ VISOCOLOR® ECO Bromine 2)	CO	0.10–13.00 mg/L Br ₂	200	931211
■ with NANOCOLOR® Chlorine Tests	Π	See Chlorine (page 28)		
²⁾ Only photometrically evaluable, with photometers PF-3. P	F-12 ^{Plus} and/or NANOC	DLOR® Advance.		

pH: Products for pH determination/QT: Qualitative test papers/HT: Semi-quantitative test strips/CO: Colorimetric test kits/TI: Titrimetric test kits/PP: Powder Pillows TT: NANOCOLOR® tube tests/ST: NANOCOLOR® standard tests/MB: Microbiological tests/RK: NANOCOLOR® ECO reagent kits

Cadmium (Cd2+)

Cadmium is used in corrosion protection, in Ni-Cd batteries and as a color pigment. Due to its high toxicity, it is banned from use in solder in the EU since 2011.

Product	Platform	Measuring range	Number of tests	REF
■ <i>NANOCOLOR®</i> Cadmium 2	П	0.05-2.00 mg/L Cd ²⁺	10–19	985014
■ NANOCOLOR® Cadmium	ST	0.002-0.50 mg/L Cd ²⁺	25	918131

Calcium (Ca²⁺)

Along with magnesium, calcium is responsible for water hardness and can lead to deposits. It is therefore part of the analysis of boiler feed water. Calcium is also an important part of a diet because calcium deficiency can lead to osteoporosis.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Calcium	HT	0 · 10 · 25 · 50 · 100 mg/L Ca ²⁺	60	91324
■ VISOCOLOR® ECO Calcium	TI	1 drop equals 5 mg/L Ca ²⁺	100	931012
■ VISOCOLOR® HE Calcium CA 20	TI	0.1–3.6 mmol/L Ca ²⁺	200	915010
■ <i>NANOCOLOR®</i> Hardness 20	П	10-100 mg/L Ca ²⁺	20	985043
■ NANOCOLOR® Hardness Ca/Mg	ТТ	10-100 mg/L Ca ²⁺	20	985044

Carbonate hardness

See Hardness (page 34)

Carbonic acid (H₂CO₃)

See Acidity (page 22)

Cationic surfactants

See Surfactants (page 46)

Chloride (Cl⁻)

Chloride ions are present in all natural waters. The concentration depends on the geological and local situation. The chloride concentration can reach high levels in waste waters, polluted rivers, or in winter time when road salt is used. Very high levels of chloride can interfere with the determination of COD.

Platform	Measuring range	Number of tests	REF
HT	0 · 0.25 · 0.5 · 1 · 2 · 3 · 4 · 5 g/L NaCl	30	90608
HT	0 · 500 · 1000 · 1500 · 2000 · ≥ 3000 mg/L Cl ⁻	100	91321
CO	1 · 2 · 4 · 7 · 12 · 20 · 40 · 60 mg/L Cl ⁻	90	931018
CO	5–500 mg/L Cl ⁻	300	915004
П	5–200 mg/L Cl ⁻	20	985019
П	0.5–50.0 mg/L Cl ⁻	20	985021
ST	0.2–125 mg/L Cl ⁻	250	91820
	HT HT CO CO TT TT	HT 0 ⋅ 0.25 ⋅ 0.5 ⋅ 1 ⋅ 2 ⋅ 3 ⋅ 4 ⋅ 5 g/L NaCl HT 0 ⋅ 500 ⋅ 1000 ⋅ 1500 ⋅ 2000 ⋅ ≥ 3000 mg/L Cl ⁻ CO 1 ⋅ 2 ⋅ 4 ⋅ 7 ⋅ 12 ⋅ 20 ⋅ 40 ⋅ 60 mg/L Cl ⁻ CO 5 – 500 mg/L Cl ⁻ TT 5 – 200 mg/L Cl ⁻ TT 0.5 – 50.0 mg/L Cl ⁻	tests HT 0 · 0 · 25 · 0 · 5 · 1 · 2 · 3 · 4 · 5 g/L NaCl 30 HT 0 · 500 · 1000 · 1500 · 2000 · ≥ 3000 mg/L Cl ⁻ 100 CO 1 · 2 · 4 · 7 · 12 · 20 · 40 · 60 mg/L Cl ⁻ 90 CO 5 – 500 mg/L Cl ⁻ 300 TT 5 – 200 mg/L Cl ⁻ 20 TT 0 · 5 – 50.0 mg/L Cl ⁻ 20

pH: Products for pH determination/QT: Qualitative test papers/HT: Semi-quantitative test strips/CO: Colorimetric test kits/TI: Titrimetric test kits/PP: Powder Pillows TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests / RK: NANOCOLOR® ECO reagent kits

Chlorine (Cl₂)

Chlorine is widely used for disinfection of swimming pools, water mains, and water reservoirs. Electroplaters use chlorine for the detoxification of cyanide-containing waste. Regular monitoring of chlorine level is essential as excessive chlorine not only impairs the smell and taste of water but also can be hazardous. One distinguishes between free chlorine and combined chlorine (chloroamines); the sum of both is called total chlorine.

Product	Platform	Measuring range	Number of tests	REF
Potassium iodide starch paper	QT	$>$ 1 mg/L $\mathrm{Cl_2}$	Reel, 5 m length refill pack 100200	90754 90755 90756 90758
■ Chlortesmo	QT	> 1 mg/L Cl ₂	200	90603
Chlorine test	HT	10 · 50 · 100 · 200 mg/L Cl ₂	Reel, 5 m length	90709
Swimming pool test 3 in 1	HT	Free chlorine: $0 \cdot 0.5 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl ₂ Alkalinity: $0 \cdot 80 \cdot 120 \cdot 180 \cdot 240$ mg/L CaCO ₃ pH: $6.4 \cdot 6.8 \cdot 7.2 \cdot 7.6 \cdot 8.4$	50	90752
Swimming pool test 5 in 1	HT	Total chlorine: $0 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl ₂ Free chlorine: $0 \cdot 0.5 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl ₂ Alkalinity: $0 \cdot 80 \cdot 120 \cdot 180 \cdot 240$ mg/L CaCO ₃ Total hardness: $0 \cdot 100 \cdot 250 \cdot 500 \cdot 1000$ mg/L CaCO ₃ pH: $6.4 \cdot 6.8 \cdot 7.2 \cdot 7.6 \cdot 8.4$	50	90759
■ QUANTOFIX [®] Chlorine	HT	$0\cdot 1\cdot 3\cdot 10\cdot 30\cdot 100~\text{mg/L Cl}_2$	100	91317
■ QUANTOFIX® Chlorine 500	HT	$0\cdot25\cdot50\cdot100\cdot250\cdot500~\text{mg/L Cl}_2$	100	91354
■ QUANTOFIX® Chlorine Sensitive 3)	HT	$0 \cdot 0.1 \cdot 0.5 \cdot 1 \cdot 3 \cdot 10 \text{ mg/L Cl}_2$	100	91339
■ QUANTOFIX® Chlorine Sensitive 1	HT	$0 \cdot 0.05 \cdot 0.1 \cdot 0.2 \cdot 0.4 \cdot 0.8 \cdot 1.2 \text{ mg/L Cl}_2$	50	91360
■ VISOCOLOR® alpha Chlorine	CO	0.25 · 0.5 · 1.0 · 1.5 · 2.0 mg/L Cl ₂	150	935019
■ VISOCOLOR® ECO Swimming pool	CO	Free chlorine: < $0.1 \cdot 0.1 \cdot 0.2 \cdot 0.3 \cdot 0.4 \cdot 0.6 \cdot 0.9 \cdot 1.2 \cdot$ 2.0 mg/L Cl ₂ pH: $6.9 \cdot 7.2 \cdot 7.4 \cdot 7.6 \cdot 7.8 \cdot 8.2$	150	931090
■ VISOCOLOR® ECO Chlorine 1, free + total 1)	CO	< 0.1 · 0.1 · 0.2 · 0.3 · 0.4 · 0.6 · 0.9 · 1.2 · 2.0 mg/L Cl ₂	150	931035
■ VISOCOLOR® ECO Chlorine 2, free + total 1)	CO	< 0.1 · 0.1 · 0.2 · 0.3 · 0.4 · 0.6 · 0.9 · 1.2 · 2.0 mg/L Cl ₂	150	931015
■ VISOCOLOR® ECO free Chlorine 2 1)	CO	< 0.1 · 0.1 · 0.2 · 0.3 · 0.4 · 0.6 · 0.9 · 1.2 · 2.0 mg/L Cl ₂	150	931016
■ VISOCOLOR® ECO Chlorine 6, free and total ²⁾	CO	0.05–6.00 mg/L Cl ₂	200	931217
■ VISOCOLOR® ECO free Chlorine 6 2)	CO	0.05-6.00 mg/L Cl ₂	400	931219
■ VISOCOLOR® HE Chlorine, free + total	CO	0.0 · 0.02 · 0.04 · 0.06 · 0.10 · 0.15 · 0.20 · 0.30 · 0.40 · 0.60 mg/L Cl ₂	160	920015
■ VISOCOLOR® Powder Pillows free Chlorine 4)	PP	0.03-6.00 mg/L Cl ₂	100 1000	936220 936220.1
■ VISOCOLOR® Powder Pillows total Chlorine, Ozone 4)	PP	0.03-6.00 mg/L Cl ₂ / 0.03-4.00 mg/LO ₃	100 1000	936221 936221.1
■ NANOCOLOR® Chlorine / Ozone 2	П	0.05–2.00 mg/L Cl ₂	20	985017
■ NANOCOLOR® Chlorine	ST	0.02-10.0 mg/L Cl ₂	250	91816

¹⁾ Also suitable for photometrical evaluation on photometers PF-3, PF-12 Ptus and / or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.

Only photometrically evaluable, with photometers PF-3, PF-12^{Plus} and/or NANOCOLOR® Advance.
 Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on QUANTOFIX® Relax can differ from visual range.
 Only photometrically evaluable, with photometers NANOCOLOR® VIS II, NANOCOLOR® VIVIS II, NANOCOLOR® Advance, PF-3 and/or PF-12^{Plus}.

Chlorine dioxide (ClO₂)

Chlorine dioxide is a powerful disinfectant which is used as an alternative to chlorine in drinking water and swimming pools. It is also used as a bleaching agent in paper industry and as a biocide in industrial cooling waters and in food industry. Chlorine dioxide is more oxidizing than chlorine.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Chlorine dioxide 15	HT	$0 \cdot 0.25 \cdot 0.5 \cdot 1 \cdot 3 \cdot 5 \cdot 10 \cdot 15 \text{ mg/L ClO}_2$	50	91355
QUANTOFIX® Chlorine dioxide 3000	HT	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 · 1500 · 2000 · 2500 · 3000 mg/L ClO ₂	100	91357
■ VISOCOLOR® ECO Chlorine dioxide 1)	CO	< 0.2 · 0.2 · 0.4 · 0.6 · 0.8 · 1.1 · 1.7 · 2.3 · 3.8 mg/L ClO ₂	150	931021
■ NANOCOLOR® Chlorine dioxide 5	Π	0.15–5.00 mg/L ClO ₂	20	985018
■ NANOCOLOR® Chlorine dioxide	ST	0.04-4.00 mg/L ClO ₂	50	918163

Chlorite (ClO₂⁻)

See Chlorine dioxide (page 29)

Chromate / Chromium(VI) (CrO₄²⁻)

Chromates are for example used in the electroplating industry. They are toxic and carcinogenic and therefore need to be monitored carefully. Many companies are obliged to control the level of chromate in their effluents.

Platform	Measuring range	Number of tests	REF
QT	$>$ 2 mg/L Cr ³⁺ or $>$ 5 mg/L CrO $_4$ ²⁻	200	90724
HT	0 · 3 · 10 · 30 · 100 mg/L CrO ₄ ²⁻	100	91301
CO	0.02 · 0.05 · 0.10 · 0.15 · 0.20 · 0.30 · 0.40 · 0.50 mg/L Cr(VI)	140	931020
TT	0.005–2.00 mg/L Cr	20	985059
TT	0.01–4.0 mg/L CrO ₄ ²⁻	20	985024
ST	0.01–6.0 mg/L CrO ₄ ²⁻	250	91825
	QT HT CO TT	QT $> 2 \text{ mg/L Cr}^{3+} \text{ or } > 5 \text{ mg/L CrO}_4^{2-}$ HT $0 \cdot 3 \cdot 10 \cdot 30 \cdot 100 \text{ mg/L CrO}_4^{2-}$ CO $0.02 \cdot 0.05 \cdot 0.10 \cdot 0.15 \cdot 0.20 \cdot 0.30 \cdot 0.40 \cdot 0.50 \text{ mg/L Cr(VI)}$ TT $0.005-2.00 \text{ mg/L CrO}_4^{2-}$ TT $0.01-4.0 \text{ mg/L CrO}_4^{2-}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Cobalt (Co²⁺)

Cobalt is used in alloys and as a component of catalysts.

Product	Platform	Measuring range	Number of tests	REF
Cobalt test paper	QT	> 25 mg/L Co ²⁺	100	90728
■ QUANTOFIX® Cobalt	HT	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L Co ²⁺	100	91303
■ NANOCOLOR® Cobalt	ST	0.002-0.70 mg/L Co ²⁺	250	91851

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits / PP: Powder Pillows TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests / RK: NANOCOLOR® ECO reagent kits

COD (chemical oxygen demand)

Besides the biological oxygen demand (BOD), the COD is the most important sum parameter for assessing the pollution of water. MACHEREY-NAGEL test tubes provide results that are comparable to the DIN 38409 H-41. Many also fulfill the requirements of DIN ISO 15705.

Product		Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® COD 60000		TT	5000–60000 mg/L O ₂	20	985012
■ NANOCOLOR® COD 15000		TT	1000–15000 mg/L O ₂	20	985028
■ NANOCOLOR® COD 10000		П	1000–10000 mg/L O ₂	20	985023
■ NANOCOLOR® COD 4000		TT	400-4000 mg/L O ₂	20	985011
■ NANOCOLOR® COD 1500	ISO 15705	П	100–1500 mg/L O ₂	20	985029
■ NANOCOLOR® COD 1500 Hg-free		TT	100-1500 mg/L O ₂	20	963029
■ NANOCOLOR® COD HR 1500	ISO 15705	TT	20-1500 mg/L O ₂	20	985038
■ NANOCOLOR® COD 600	ISO 15705	TT	50–600 mg/L O ₂	20	985030
■ NANOCOLOR® COD 300		П	50–300 mg/L O ₂	20	985033
■ NANOCOLOR® COD 160	ISO 15705	ТТ	15–160 mg/L O ₂	20	985026
■ NANOCOLOR® COD 160 Hg-free		П	15–160 mg/L O ₂	20	963026
■ NANOCOLOR® COD LR 150	ISO 15705	П	3–150 mg/L O ₂	20	985036
■ NANOCOLOR® COD 60	ISO 15705	TT	5–60 mg/L O ₂	20	985022
■ NANOCOLOR® COD 60 in salt water	er	TT	6–60 mg/L O ₂	20	985020
■ NANOCOLOR® COD 40	ISO 15705	TT	2–40 mg/L O ₂	20	985027

Coloring / Color

Natural waters are usually brown to yellow. The Hazen scale, which is calibrated with platinum cobalt chloride standards, is a reference for the color strength. Color measurements are special methods available in certain photometers and do not require additional reagents. Please see photometer manuals for details.

Product	Platform	Measuring range	Number of tests	REF
Color (Hazen / DIN)	ST	5-500 mg/L Pt (Hazen)	_	_

Complexing agents

See EDTA (page 32)

Cooking salt (NaCl)

See Chloride (page 27)

Cooling lubricants

Cooling lubricants or coolants are used when metal parts are machined (drilling, cutting, etc.). Different parameters, e.g. pH and lubricant concentration, are checked to ensure the optimal function.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® LubriCheck	HT	0 · 15 · 50 · 75 · 130 · 200 mmol/L KOH	100	91336
■ QUANTOFIX® Nitrite / pH	HT	Nitrite: 0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻ pH: 6.0 · 6.4 · 6.7 · 7.0 · 7.3 · 7.6 · 7.9 · 8.2 · 8.4 · 8.6 · 8.8 · 9.0 · 9.3 · 9.6	100	91338

pH: Products for pH determination/QT: Qualitative test papers/HT: Semi-quantitative test strips/CO: Colorimetric test kits/TI: Titrimetric test kits/PP: Powder Pillows TT: NANOCOLOR® tube tests/ST: NANOCOLOR® standard tests/MB: Microbiological tests/RK: NANOCOLOR® ECO reagent kits

Copper (Cu²⁺)

Copper is one of the most widely used metals in the industry for example on surfaces and as a component of alloys. In addition, it is also used in pesticides.

Product	Platform	Measuring range	Number of tests	REF
Copper test paper	QT	$> 20 \text{ mg/L Cu}^{2+}$	200	90729
■ Cuprotesmo	QT	> 5 mg/L Cu ^{+/2+} or > 0.05 μ g Cu	40	90601
■ QUANTOFIX® Copper	HT	0 · 10 · 30 · 100 · 300 mg/L Cu ^{+/2+}	100	91304
■ QUANTOFIX® Copper Sensitive 5	HT	0 · 0.1 · 0.5 · 1.0 · 2.0 · 5.0 mg/L Cu ^{+/2+}	25	91358
■ VISOCOLOR® ECO Copper 1)	CO	0 · 0.1 · 0.2 · 0.3 · 0.5 · 0.7 · 1.0 · 1.5 mg/L Cu ²⁺	100	931037
■ VISOCOLOR® HE Copper	CO	0.0 · 0.04 · 0.07 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 · 0.40 · 0.50 mg/L Cu ²⁺	150	920050
■ NANOCOLOR® Copper 5	π	0.10–7.00 mg/L Cu ²⁺	20	985053
■ NANOCOLOR® Copper	ST	0.01–10.0 mg/L Cu ²⁺	250	91853

¹⁾ Also suitable for photometrical evaluation on photometers PF-3, PF-12^{Pks} and / or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.

Cyanide (CN⁻)

Cyanide is extremely toxic. The lethal dose is about 1 mg/kg body weight. A careful control is therefore essential, whenever cyanides are used for industrial processes, e.g. in electroplating or in the extraction of gold. Intense control is also required in the production of fruit brandy from stone fruit.

Product	Platform	Measuring range	Number of tests	REF
Cyantesmo	QT	> 0.2 mg/L CN ⁻ or HCN	Reel, 5 m length	90604
■ QUANTOFIX® Cyanide	HT	0 · 1 · 3 · 10 · 30 mg/L CN⁻	100	91318
■ VISOCOLOR® ECO Cyanide 1)	CO	0 · 0.01 · 0.02 · 0.03 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 mg/L CN⁻	100	931022
■ VISOCOLOR® HE Cyanide	CO	0.0 · 0.002 · 0.004 · 0.007 · 0.010 · 0.015 · 0.020 · 0.025 · 0.030 · 0.040 mg/L CN⁻	50	920028
■ NANOCOLOR® easily liberated Cyanide 04	П	0.01–0.40 mg/L CN ⁻	19	985025
■ <i>NANOCOLOR®</i> Cyanide 08	П	0.005–0.80 mg/L CN ⁻	20	985031
■ NANOCOLOR® Cyanide	ST	0.001–0.50 mg/L CN ⁻	250	91830

¹⁾ Also suitable for photometrical evaluation on photometers PF-3, PF-12 Pais and / or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.

Cyanuric acid

Cyanuric acid is a common stabilizer for chlorine in swimming pools which is degraded by intensive UV radiation, if it is not stabilized. Therefore, cyanuric acid ensures the water's safe and proper disinfection.

Product	Platform	Measuring range	Number of tests	REF
Cyanuric acid test	HT	0 · 50 · 100 · 150 · 300 mg/L Cya	25	90710
■ VISOCOLOR® ECO Cyanuric acid 1)	CO	10 · 15 · 20 · 30 · 40 · 60 · 80 · 100 mg/L Cya	100	931023
1) Also suitable for photometrical evaluation on photometers PF-3, PF-12 ^{Plus} and / or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.				

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits / PP: Powder Pillows TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests / RK: NANOCOLOR® ECO reagent kits

DEHA (diethylhydroxylamine)

N,N-diethylhydroxylamine (DEHA) is used as an oxygen scavenger in boiler feed water that effectively prevents corrosion.

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® ECO DEHA 1)	CO	0 · 0.01 · 0.03 · 0.05 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 mg/L DEHA	125	931024
NANOCOLOR® DEHA 1	П	0.05-1.00 mg/L DEHA	20	985035
4)				

Detergents

See Surfactants (detergents) (page 46)

Disinfectants

With QUATs as active substance: see Quaternary ammonium complexes (page 44)

With peracetic acid as the active substance: see Peracetic acid (page 41)

With peroxide as the active substance: see Peroxide (page 41)

With glutaraldehyde as the active substance: see Glutaraldehyde (page 33)

With chlorine as the active substance: see Chlorine (page 28)

With chlorine dioxide as the active substance: see Chlorine dioxide (page 29)

With ozone as the active substance: see Ozone (page 40)

Dithionite (S₂O₄²⁻)

The detection of dithionite is important to determine the end point of the conversion of vat dyes to the leuco form in textile industry.

Product	Platform	Measuring range	Number of tests	REF
■ Nitrazine yellow paper	QT	Traces of sodium dithionite	200	90751
■ VISOCOLOR® HE Sulfite SU 100	TI	2–100 mg/L SO ₃ ²⁻	100	915008

EDTA (ethylendiaminetetraacetic acid)

EDTA and other chelating agents are often used as additives in detergents and cleaning agents, cosmetics and in the food industry. They are poorly biodegradable and can interfere with the photometric determination of metal ions. Other chelating agents are also detected (for details see instruction leaflet).

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® EDTA	HT	0 · 100 · 200 · 300 · 400 mg/L EDTA	100	91335
■ NANOCOLOR® org. Complexing agents 10	TT	0.5–15.0 mg/L $I_{\rm BIC}$ / 0.5–20.0 mg/L EDTA	10–19	985052

Ethanol (C₂H₅OH)

Ethanol is the least toxic alcohol to humans and is present in beer, wine, liquor and other alcoholic beverages. It can also be used as a disinfectant and for preservation.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® Ethanol 1000	ТТ	100-1000 mg/L EtOH/0.013-0.130 Vol. % EtOH	23	985838

Fatty acids

See Organic acids (page 40)

Fluoride (F⁻)

Fluoride is naturally present in water but is sometimes also added to drinking water as a health care measure. The determination of fluoride can be used for the rapid detection of hydrofluoric acid (HF), which is used in large quantities in semiconductor industry.

Product	Platform	Measuring range	Number of tests	REF
Fluoride test paper	QT	$>$ 20 mg/L F $^-$	200	90750
■ Fluoride test	HT	0 · 2 · 5 · 10 · 20 · 50 · 100 mg/L F	30	90734
■ VISOCOLOR® ECO Fluoride ²⁾	CO	0.1–2.0 mg/L F ⁻	150	931227
■ NANOCOLOR® Fluoride 2	TT	0.1–2.0 mg/L F ⁻	20	985040
■ NANOCOLOR® Fluoride	ST	0.05–2.00 mg/L F ⁻	500	918142

²⁾Only photometrically evaluable, with photometers PF-3, PF-12^{Plus} and/or NANOCOLOR® Advance.

Formaldehyde (HCHO)

Formaldehyde is used in large quantities as a raw material in chemical industry and as a biocide in closed cooling or heating circuits. Additionally, it is used for the production of wood-based panels (chipboards), and for textile treatment. Formaldehyde can cause allergies and irritation of skin, eyes and the respiratory tract.

Product	Platform	Measuring range	Number of tests	REF
QUANTOFIX® Formaldehyde 3)	HT	0 · 10 · 20 · 40 · 60 · 100 · 200 mg/L HCHO	100	91328
■ <i>NANOCOLOR</i> ® Formaldehyde 10	ТТ	0.02-10.00 mg/L HCHO	20	985046
■ <i>NANOCOLOR®</i> Formaldehyde 8	П	0.1-8.0 mg/L HCHO	20	985041

³⁾ Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on the QUANTOFIX® Relax can differ from visual range.

Glucose

Glucose is an important ingredient in many foods. Similar to total sugar (see page 47) it is a quality criterion for potatoe processing and in beverage industry.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Glucose 3)	HT	0 · 50 · 100 · 250 · 500 · 1000 · 2000 mg/L glucose	100	91348

³⁾ Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on the QUANTOFIX® Relax can differ from visual range.

Glutaraldehyde

Glutaraldehyde is a strong disinfectant that is used e.g. for the disinfection of surgical instruments. The concentration must be sufficiently high to ensure that instruments are free of contaminants.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Glutaraldehyde	HT	$0 \cdot 0.5 \cdot 1 \cdot 1.5 \cdot 2 \cdot 2.5 \%$ glutaraldehyde	100	91343

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits / PP: Powder Pillows TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests / RK: NANOCOLOR® ECO reagent kits

Hardness

Water hardness is primarily caused by calcium and magnesium. It forms deposits in pipes and on heating elements and can lead to damages. Testing water hardness is important to dose water softeners correctly. Very low residual hardness is required in industrial boiler feed water.

Water is often classified as "soft" or "hard". The following ranges apply in European households:

 $< 150 \text{ ppm } (10.5 ^{\circ}\text{e}) = \text{soft water}$

150–250 ppm (10.5 to 17.5 $^{\circ}$ e) = moderately hard water

> 250 ppm (17 °e) = hard water

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Carbonate hardness	HT	0·3.75·7.5·12.5·18.75·25 °e	100	91323
QUANTOFIX® Multistick for aquarium owners	HT	Total hardness: 0 · 6.25 · 12.5 · 18.75 · 25 · 31.25 °e Carbonate hardness: 0 · 3.75 · 7.5 · 12.5 · 18.75 · 25 °e pH: 6.4 · 6.8 · 7.2 · 7.6 · 8.0 · 8.4	100	91326
■ QUANTOFIX [®] Multistick for aquarium owners	HT	Total hardness: 0 · 6.25 · 12.5 · 18.75 · 25 · 31.25 °e Carbonate hardness: 0 · 3.75 · 7.5 · 12.5 · 18.75 · 25 °e pH: 6.4 · 6.8 · 7.2 · 7.6 · 8.0 · 8.4	25	91327
Swimming pool test 5 in 1	HT	Total chlorine: $0 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl ₂ Free chlorine: $0 \cdot 0.5 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl ₂ Alkalinity: $0 \cdot 80 \cdot 120 \cdot 180 \cdot 240$ mg/L CaCO ₃ Total hardness: $0 \cdot 100 \cdot 250 \cdot 500 \cdot 1000$ mg/L CaCO ₃ pH: $6.4 \cdot 6.8 \cdot 7.2 \cdot 7.6 \cdot 8.4$	50	90759
■ AQUADUR®	HT	$< 54 \cdot > 90 \cdot > 180 \cdot > 270 \cdot > 360 \cdot > 450 \text{ ppm CaCO}_3$	100	91201
■ AQUADUR®	HT	$< 54 \cdot > 90 \cdot > 180 \cdot > 270 \cdot > 360 \cdot > 450 \text{ ppm CaCO}_3$	1000	91223
■ AQUADUR®	HT	$< 54 \cdot > 90 \cdot > 180 \cdot > 270 \cdot > 360 \cdot > 450 \text{ ppm CaCO}_3$	5000	91221
■ AQUADUR®	HT	$< 54 \cdot > 90 \cdot > 180 \cdot > 270 \cdot > 360 \cdot > 450 \text{ ppm CaCO}_3$	50 x 3 pieces	912902
■ AQUADUR®	HT	$<54\cdot>72\cdot>126\cdot>252\cdot>378$ ppm CaCO $_3$	100	91220
■ AQUADUR®	HT	$<54\cdot>72\cdot>126\cdot>252\cdot>378$ ppm CaCO $_{\!3}$	1000	91224
■ AQUADUR®	HT	$<54\cdot>72\cdot>126\cdot>252\cdot>378~\text{ppm CaCO}_3$	5000	91222
■ AQUADUR®	HT	$<54\cdot>72\cdot>151.2\cdot>252$ ppm CaCO $_3$	100	91239
■ AQUADUR®	HT	$< 54 \cdot > 72 \cdot > 151.2 \cdot > 252 \cdot > 378 \text{ ppm CaCO}_3$	1000	91240
■ AQUADUR® Sensitive	HT	$0 \cdot 5.4 \cdot 10.8 \cdot 18.8 \text{ ppm CaCO}_3$	50	91243
■ VISOCOLOR® alpha Carbonate hardness	TI	1 drop equals 1.25 °e	100	935016
■ VISOCOLOR® alpha Total hardness	TI	1 drop equals 1.25 °e	100	935042
■ VISOCOLOR® alpha Residual hardness	CO	0.00 · 0.05 · 0.10 · 0.19 · 0.38 °e	200	935080
■ VISOCOLOR® ECO Carbonate hardness	TI	1 drop equals 1.25 °e	100	931014
■ VISOCOLOR® ECO Total hardness	TI	1 drop equals 1.25 °e	110	931029
■ VISOCOLOR® HE Carbonate hardness C 20	TI	0.6–25 °e	200	915003
■ VISOCOLOR® HE Total hardness H 20 F	TI	0.6–25.0 °e	200	915005
■ VISOCOLOR® HE Total hardness H 2	TI	0.06-2.50 °e	200	915002
■ NANOCOLOR® Carbonate hardness 15	ТТ	1.25–18.75 °e	20	985015
■ NANOCOLOR® Hardness 20	П	1.25–25.00 °e	20	985043
■ NANOCOLOR® Hardness Ca/Mg	П	1.25–25.0 °e	20	985044
NANOCOLOR® Residual hardness 1	Π	0.03-1.25 °e	20	985084

Hydrazine (N_2H_4)

Hydrazine is a powerful oxygen scavenger for boiler feed water and is used to prevent corrosion. Since it is toxic and carcinogenic, the use must be carefully controlled. In many areas, it was replaced by the less dangerous DEHA.

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® ECO Hydrazine 1)	CO	$0 \cdot 0.05 \cdot 0.10 \cdot 0.15 \cdot 0.20 \cdot 0.25 \cdot 0.30 \cdot 0.40 \text{ mg/L N}_2\text{H}_4$	130	931030
■ NANOCOLOR® Hydrazine	ST	0.002–1.50 mg/L N ₂ H ₄	250	91844
1) Also suitable for photometrical evaluation on photometers PF-3, PF-12 ^{Plus} and / or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.				

Hydrocarbons

Even low concentrations of hydrocarbons such as gasoline, diesel or oil can contaminate water and soil.

Product	Platform	Measuring range	Number of tests	REF
Oil test paper	QT	> 250 mg/L petroleum ether or > 10 mg/L gasoline > 5 mg/L fuel oil or > 1 mg/L lubricating oil	100	90760
■ NANOCOLOR® HC 300	П	0.5–5.6 mg/L HC	20	985057

Hydrogen cyanide (HCN)

See Cyanide (page 31)

Hydrogen peroxide (H₂O₂)

See Peroxide (page 41)

Iodine (I⁻)

See Chlorine (page 28)

Iron (Fe^{2+/3+})

Iron is used in the industry for example for piping and containers. The determination of iron is a key indicator for the level of corrosion.

Iron is not desired in drinking water as it leads to a brown color and a foul smell.

Product	Platform	Measuring range	Number of tests	REF
■ Dipyridyl paper (specific for Fe²+)	QT	$> 2 \text{ mg/L Fe}^{2+}$	200	90725
■ Iron test paper	QT	$> 10 \text{ mg/L Fe}^{2+/3+}$	100	90726
QUANTOFIX® Total iron 1000	HT	0 · 5 · 20 · 50 · 100 · 250 · 500 · 1000 mg/L Fe ^{2+/3+}	100	91330
QUANTOFIX® Total iron 100	HT	0 · 2 · 5 · 10 · 25 · 50 · 100 mg/L Fe ^{2+/3+}	100	91344
QUANTOFIX® Iron Sensitive 1	HT	0 · 0.05 · 0.1 · 0.2 · 0.5 · 1.0 mg/L Fe ^{2+/3+}	25	91359
■ VISOCOLOR® ECO Iron 1 1)	CO	0 · 0.04 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 · 0.50 · 1.0 mg/L Fe	200	931025
■ VISOCOLOR® ECO Iron 2 1)	CO	0 · 0.04 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 · 0.50 · 1.0 mg/L Fe	100	931026
■ VISOCOLOR® HE Iron	CO	0.0 · 0.01 · 0.02 · 0.03 · 0.04 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 mg/L Fe	300	920040
■ VISOCOLOR® Powder Pillows Iron 4)	PP	0.03-3.00 mg/L Fe	100	936227
■ NANOCOLOR® Iron 3	ТТ	0.02–3.00 mg/L Fe	20	985037
■ NANOCOLOR® Iron	ST	0.01–15.0 mg/L Fe	250	91836
■ NANOCOLOR® Iron LR	ST	0.005–50.0 mg/L Fe	250	918128

¹⁾ Also suitable for photometrical evaluation on photometers PF-3, PF-12^{Plus} and / or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.
⁴⁾ Only photometrically evaluable, with photometers NANOCOLOR® VIS II, NANOCOLOR® LV/vis II, NANOCOLOR® Advance, PF-3 and / or PF-12^{Plus}.

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits / PP: Powder Pillows TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests / RK: NANOCOLOR® ECO reagent kits

Lactoperoxidase

See Peroxidase (page 41)

Lead (Pb²⁺)

Lead in a water supply may have different sources, e.g. industrial, mine, and smelter discharges or dissolution of plumbing and plumbing fixtures. Lead also is used in service pipes, thus tap water may also contain lead. Lead is toxic if ingested and is a cumulative poison.

Product	Platform	Measuring range	Number of tests	REF
■ Plumbtesmo	QT	> 5 mg/L Pb ²⁺	40	90602
■ NANOCOLOR® Lead 5	П	0.10–5.00 mg/L Pb ²⁺	20	985009
■ <i>NANOCOLOR®</i> Lead	ST	0.005-1.00 mg/L Pb ²⁺	50	918101

Luminous bacteria test

See Toxicity (page 47)

Magnesium (Mg²⁺)

Magnesium and calcium are responsible for the hardness of water and can lead to lime deposits. Magnesium is also an important parameter in the food industry, since it is essential for a number of physiological processes.

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® ECO Total hardness and VISOCOLOR® ECO Calcium	TI TI	1 drop equals 1.25 °e 1 drop equals 0.875 °e	110 100	931029 931012
■ NANOCOLOR® Hardness 20	Π	1.25–25.0 °e	20	985043
■ <i>NANOCOLOR®</i> Hardness Ca/Mg	П	1.25-25.0 °e/5-50 mg/L Mg ²⁺	20	985044

Manganese (Mn)

Manganese is widely used in steel alloys together with iron, aluminum and other metals. It is also an essential trace element, since it is part of several enzymes. Manganese can negatively influence the quality of food.

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® ECO Manganese 1)	CO	0 · 0.1 · 0.2 · 0.3 · 0.5 · 0.7 · 0.9 · 1.2 · 1.5 mg/L Mn	70	931038
■ VISOCOLOR® HE Manganese	CO	0.0 · 0.03 · 0.06 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 · 0.40 · 0.50 mg/L Mn	100	920055
■ NANOCOLOR® Manganese 10	Π	0.1–10.0 mg/L Mn/5–50 mg/L Mg ²⁺	20	985058
■ NANOCOLOR® Manganese	ST	0.01–10.0 mg/L Mn	250	91860
■ <i>NANOCOLOR®</i> Manganese LR	ST	0.005–3.00 mg/L Mn	250	918126
1) Also suitable for photometrical evaluation on photometer	e DE-3 DE-10 ^{Plus} and /or	NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation	1	

pH: Products for pH determination/QT: Qualitative test papers/HT: Semi-quantitative test strips/CO: Colorimetric test kits/TI: Titrimetric test kits/PP: Powder Pillows TT: NANOCOLOR® tube tests/ST: NANOCOLOR® standard tests/MB: Microbiological tests/RK: NANOCOLOR® ECO reagent kits

Mastitis

Mastitis (inflammation) of a cow's udder must be detected promptly, because the milk of infected animals may not be placed on the market. It can be recognized by a check of the milk's pH value, e.g. with the udder test paper.

Product	Platform	Measuring range	Number of tests	REF
Udder test paper	QT	Traces of Mastitis	20	90748

Methanol (CH₃OH)

In wastewater treatment plants, methanol can be used as a carbon source in the denitrification process. It is naturally present in different fruit juices. Because of its toxicity, this alcohol may also be carefully controlled during juice production.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® Methanol 15	TT	0.2-15.0 mg/L MeOH	23	985859

Milk

Alkaline phosphatase (control of pasteurization) see Phosphatase (page 42) Lactoperoxidase (control of ultra high temperature milk) see Peroxidase (page 41)

Molybdenum (Mo⁶⁺)

Molybdenum salts are used as corrosion inhibitors, mainly in coolant water and boiler feed water. The careful control of molybdenum is necessary to ensure a sufficient corrosion prevention.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Molybdenum	HT	0 · 5 · 20 · 50 · 100 · 250 mg/L Mo ⁶⁺	100	91325
■ NANOCOLOR® Molybdenum 40	П	1.0-40.0 mg/L Mo(VI)	20	985056

Nickel (Ni²⁺)

Nickel can cause allergic reactions on the skin. Metal objects that can have skin contact, are therefore regularly tested for their nickel content.

Nickel is also used for metal plating processes. Here, the nickel content is controlled in the baths as well as in the outflow.

Product	Platform	Measuring range	Number of tests	REF
■ Nickel test paper	QT	$> 10 \text{ mg/L Ni}^{2+}$	200	90730
■ QUANTOFIX® Nickel	HT	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L Ni ²⁺	100	91305
■ VISOCOLOR® ECO Nickel 1)	CO	0 · 0.1 · 0.2 · 0.3 · 0.5 · 0.7 · 0.9 · 1.2 · 1.5 mg/L Ni ²⁺	150	931040
■ NANOCOLOR® Nickel 4	Π	0.10-7.00 mg/L Ni ²⁺	20	985071
■ NANOCOLOR® Nickel	ST	0.01–10.0 mg/L Ni ²⁺	250	91862
1) Also suitable for photometrical evaluation on photomete	rs PF-3, PF-12 ^{Plus} and/or	NANOCOLOR® Advance. Measuring range can differ in photometrical evaluati	on.	

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits / PP: Powder Pillows TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests / RK: NANOCOLOR® ECO reagent kits

Parameters A-Z

Nitrate (NO₃⁻)

Nitrate is a by-product of biological decay from plant and animal matter (nitrification). Nitrate is reduced to nitrite easily, which can lead to diseases and increased fish mortality. Furthermore, high concentrations of nitrate itself are also harmful. Such concentrations are found predominantly in agricultural areas where nitrogen fertilizer is regularly used. The EU's limit for nitrate in drinking water is 50 mg/L. Nitrate is also an important parameter in the outflow of wastewater treatment plants.

Product	Platform	Measuring range	Number of tests	REF
■ Nitratesmo	QT	> 10 mg/L NO $_3^-$ or > 5 mg/L NO $_2^-$	Reel, 5 m length	90611
QUANTOFIX® Nitrate 1003)	HT	0 · 5 · 10 · 25 · 50 · 75 · 100 mg/L NO ₃ -	100	91351
QUANTOFIX® Nitrate / Nitrite 3)	HT	Nitrate: 0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L NO ₃ ⁻ Nitrite: 0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻	100	91313
■ VISOCOLOR® alpha Nitrate	CO	2 · 8 · 15 · 30 · 50 mg/L NO ₃ -	100	935065
■ VISOCOLOR® ECO Nitrate 1)	CO	$0 \cdot 1 \cdot 3 \cdot 5 \cdot 10 \cdot 20 \cdot 30 \cdot 50 \cdot 70 \cdot 90 \cdot 120 \text{ mg/L NO}_3^-$	110	931041
■ VISOCOLOR® Powder Pillows Nitrate 4)	PP	1.0–50 mg/L NO ₃ -N	100	936226
■ NANOCOLOR® Nitrate 250	π	4–60 mg/L NO ₃ -N	20	985066
■ NANOCOLOR® Nitrate 50	П	0.3–22.0 mg/L NO ₃ -N	20	985064
■ NANOCOLOR® Nitrate 8	П	0.30-8.00 mg/L NO ₃ -N	20	985065
■ NANOCOLOR® Nitrate	ST	0.1–30.0 mg/L NO ₃ -N	100	91865
■ NANOCOLOR® Nitrate Z	ST	0.02–1.0 mg/L NO ₃ -N	500	91863

¹⁾ Also suitable for photometrical evaluation on photometers PF-3, PF-12^{Plus} and/or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.

³/Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on the QUANTOFIX® Relax can differ from visual range. ⁴/Only photometrically evaluable, with photometers NANOCOLOR® V/S II, NANOCOLOR® U/V/S II, NANOCOLOR® Advance, PF-3 and/or PF-12^{Plus}.

Nitrite (NO₂⁻)

Nitrite is produced as an intermediate in the nitrification in sewage treatment plants. An excessive content of nitrite indicates that the plant's biology does not work optimally. A high level of nitrite in cooling lubricants indicates a microbiological contamination of the circuit (see also cooling lubricants page 30). Nitrite has to be controlled in aquariums as well in order to ensure optimum living conditions for the aquatic life.

Platform	Measuring range	Number of tests	REF
QT	> 1 mg/L NO ₂ ⁻	Reel, 5 m length Refill pack 100200	90754 90755 90756 90758
QT	$>$ 10 mg/L NO $_3^-$ or $>$ 5 mg/L NO $_2^-$	Reel, 5 m length	90611
HT	0 · 0.1 · 0.3 · 0.6 · 1 · 2 · 3 g/L NO ₂ -	100	91322
HT	0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻	100	91311
HT	Nitrate: 0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L NO ₃ ⁻ Nitrite: 0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻	100	91313
HT	Nitrite: 0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻ pH: 6.0 · 6.4 · 6.7 · 7.0 · 7.3 · 7.6 · 7.9 · 8.2 · 8.4 · 8.6 · 8.8 · 9.0 · 9.3 · 9.6	100	91338
CO	0.05 · 0.10 · 0.25 · 0.5 · 1.0 mg/L NO ₂ -	200	935066
CO	0 · 0.02 · 0.03 · 0.05 · 0.07 · 0.1 · 0.2 · 0.3 · 0.5 mg/L NO ₂ ⁻	120	931044
CO	0.0 · 0.005 · 0.010 · 0.015 · 0.02 · 0.03 · 0.04 · 0.06 · 0.08 · 0.10 mg/L NO ₂ ⁻	150	920063
PP	0.01–0.30 mg/L NO ₂ -N	100	936230
П	0.1–4.0 mg/L NO ₂ -N	20	985069
П	0.003-0.460 mg/L NO ₂ -N	20	985068
ST	0.002-0.30 mg/L NO ₂ -N	250	91867
	QT HT HT HT CO CO CO PP TT TT	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹⁾ Also suitable for photometrical evaluation on photometers PF-3, PF-12 Pais and / or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.

Nitrification inhibition

The nitrification is an important part in the process of nitrogen elimination in sewage treatment plants. A number of different substances in the sewage plant inflow may interfere this process.

Product	Platform	Measuring range	Number of tests	REF
■ BioFix [®] A-Tox	MB	0-100 % inhibition of the oxidation of ammonium	25	970001
■ BioFix® <i>N-Tox</i>	MB	0-100 % inhibition of the oxidation of nitrite	25	970002

Nitrogen (total, kjeldahl, N)

Total nitrogen is the sum of all nitrogen-containing compounds in a water sample. It is an important parameter in the outflow control of water treatment plants.

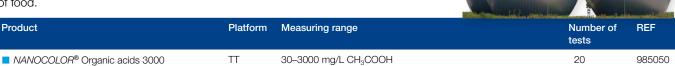
Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® total Nitrogen TN _b 220	П	5–220 mg/L N	20	985088
■ NANOCOLOR® total Nitrogen TN _b 60	П	3–60 mg/L N	20	985092
■ NANOCOLOR® total Nitrogen TN _b 22	П	0.5–22.0 mg/L N	20	985083
■ NANOCOLOR® total Kjeldahl nitrogen TKN 16	П	1.00-16.0 mg/L TKN	20	985067

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits / PP: Powder Pillows TT: NANOCOLOR® tube tests/ST: NANOCOLOR® standard tests/MB: Microbiological tests/RK: NANOCOLOR® ECO reagent kits

³ Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on QUANTOFIX® Relax can differ from visual range.
4 Only photometrically evaluable, with photometers NANOCOLOR® V/S II, NANOCOLOR® Advance, PF-3 and / or PF-12 Plus.

Parameters A-Z

Non-ionic detergents


See Surfactants (detergents) (page 46)

Oil

See Hydrocarbons (page 35)

Organic acids

Fatty acids and acetic acid are examples of organic acids in the field of water analysis. Acetic acid (table vinegar) has a germicidal effect, which is utilized for the preservation of food.

Oxygen (O₂)

Oxygen in water is an important parameter for aquatic life, but also in the prevention of corrosion, e.g. in boiler feed water.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Active oxygen	HT	0 · 4 · 8 · 15 · 25 mg/L KMPS	100	91349
■ VISOCOLOR® ECO Oxygen 1)	CO	0 · 1 · 2 · 3 · 4 · 6 · 8 · 10 mg/L O ₂	50	931088
■ VISOCOLOR® HE Oxygen SA 10	TI	0.2-10.0 mg/L O ₂	100	915009
■ NANOCOLOR® Oxygen 12	Π	0.5–12.0 mg/L O ₂	22	985082

¹⁾ Also suitable for photometrical evaluation on photometers PF-3, PF-12^{Plus} and / or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.

Ozone (O₃)

Ozone, a potent disinfectant, is widely used for the sterilization and purification of water in swimming baths, breweries, pharmaceutical industries, and mineral water factories. The gas is toxic to humans and is also produced in the environment from oxygen and nitrogen oxide under the influence of sunlight. When ozone concentrations in air are higher than $180 \, \mu g/m^3$ sensitive persons should avoid physical exertion outdoors.

Product	Platform	Measuring range	Number of tests	REF			
Potassium iodide starch paper	QT	Qualitative	Reel, 5 m length refill pack 100200	90754 90755 90756 90758			
Ozone test (measurement in air)	HT	$<90\cdot90150\cdot150210\cdot>210~\mu\text{g/m}^3~\text{O}_3$ (ozone content in air)	12	90736			
■ VISOCOLOR® Powder Pillows total Chlorine, Ozone 4)	PP	0.03–6.00 mg/L Cl ₂ /0.03–4.00 mg/L O ₃	100 1000	936221 936221.1			
■ NANOCOLOR® Chlorine / Ozone 2	П	0.05–2.00 mg/L O ₃	20	985017			
■ NANOCOLOR® Ozone	ST	0.01–1.50 mg/L O ₃	200	91885			
1) Only photometrically evaluable, with photometers NANOCOLOR® VIS II, NANOCOLOR® UV/vis II, NANOCOLOR® Advance, PF-3 and/or PF-12 ^{Plus} .							

Peracetic acid (CH₃COOOH)

Peracetic acid is a widely used, very strong disinfectant which is applied both for piping and tanks in the food industry and for bleaching in the pulp and paper industry. Disinfectant baths in the medical sector must be checked regularly, as peracetic acid can decompose in the presence of traces of blood.

Platform	Measuring range	Number of tests	REF
HT	0.500.1000.1500.2000 mg/L peracetic acid	100	91342
HT	0 · 50 · 100 · 200 · 300 · 400 · 500 mg/L peracetic acid	100	91341
HT	0 · 5 · 10 · 20 · 30 · 50 mg/L peracetic acid	100	91340
	HT HT	HT 0 ⋅ 500 ⋅ 1000 ⋅ 1500 ⋅ 2000 mg/L peracetic acid HT 0 ⋅ 50 ⋅ 100 ⋅ 200 ⋅ 300 ⋅ 400 ⋅ 500 mg/L peracetic acid	HT 0⋅500⋅1000⋅1500⋅2000 mg/L peracetic acid 100 HT 0⋅50⋅100⋅200⋅300⋅400⋅500 mg/L peracetic acid 100

Peroxidase

The enzyme peroxidase is an important parameter in food industry to control the quality of canned food. Lactoperoxidase is an indicator of the integrity of high-temperature heating in dairy industry.

Product	Platform	Measuring range	Number of tests	REF
Peroxtesmo KM (for criminalistics)	QT	Traces of blood	25	90605
Peroxtesmo KO (for food industry)	QT	Traces of peroxidase	100	90606
Peroxtesmo MI (for dairy industry)	QT	> 3 % raw milk in UHT milk	100	90627

Peroxide (H_2O_2)

Hydrogen peroxide is a disinfectant. It is used in the dairy and beverage industry for disinfection of packaging. Prior to the disinfection, the check for a sufficiently high concentration of peroxide is mandatory. After the disinfection, the complete removal of peroxides has to be controlled.

Some solvents, which are used in the chemical industry, tend to form peroxides. The check for peroxides in such solvents is of importance to avoid explosions during heating.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Peroxide 1000 ³⁾	HT	$0 \cdot 50 \cdot 150 \cdot 300 \cdot 500 \cdot 800 \cdot 1000 \text{ mg/L H}_2\text{O}_2$	100	91333
■ QUANTOFIX® Peroxide 100 ³⁾	HT	0 · 1 · 3 · 10 · 30 · 100 mg/L H ₂ O ₂	100	91312
QUANTOFIX® Peroxide 25 3)	HT	$0 \cdot 0.5 \cdot 2 \cdot 5 \cdot 10 \cdot 25 \text{ mg/L H}_2\text{O}_2$	100	91319
■ NANOCOLOR® Peroxide 2	π	0.03–2.00 mg/L H ₂ O ₂	10–19	985871
3) Also suitable for evaluation on QUANTOFIX® Relax. Mea	suring range on the QUAN	TOFIX® Relax can differ from visual range.		

Phenol

Phenols are found in domestic and industrial waste water. They are used i.a. for the production of pharmaceuticals and pesticides.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® Phenolic index 5	Π	0.2-5.0 mg/L phenol	20	985074
■ NANOCOLOR® Phenol	ST	0.01-7.0 mg/L phenol	500	91875

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits / PP: Powder Pillows TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests / RK: NANOCOLOR® ECO reagent kits

Parameters A–Z

Phosphatase

The determination of alkaline phosphatase in milk allows a quick and easy quality control of pasteurization (Phosphatesmo MI).

The test for acid phosphatase (Phosphatesmo KM) enables a quick and simple check for sperm in stains. However, this test does not replace the detection of intact sperm.

Product	Platform	Measuring range	Number of tests	REF
■ Phosphatesmo KM (for criminalistics)	QT	Traces of sperm	25	90607
■ Phosphatesmo MI (for dairy industry)	QT	> 0.5 % raw milk in pasteurized milk or > 300 U/L alkaline phosphatase in UHT milk	50	90612

Phosphate (phosphorous, PO₄3-)

High levels of phosphate in surface water are an indication of domestic sewage, fertilizer or industrial wastewater. Very high levels lead to eutrophication (over-fertilization) of rivers and lakes and can ultimately lead to the death of fish and plants. The elimination of phosphorus from wastewater is therefore an important target of cleaning in sewage treatment plants.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Phosphate 3)	HT	$0 \cdot 3 \cdot 10 \cdot 25 \cdot 50 \cdot 100 \text{ mg/L PO}_4^{3-}$	100	91320
■ QUANTOFIX® Phosphate 10	HT	0 · 0.5 · 2.0 · 5.0 · 10.0 mg/L PO ₄ ³⁻	100	91356
■ VISOCOLOR® alpha Phosphate	CO	2 · 5 · 10 · 15 · 20 mg/L PO ₄ ³⁻	70	935079
■ VISOCOLOR® ECO Phosphate 1)	CO	$0 \cdot 0.2 \cdot 0.3 \cdot 0.5 \cdot 0.7 \cdot 1 \cdot 2 \cdot 3 \cdot 5 \text{ mg/L PO}_{4}\text{-P}$	80	931084
■ VISOCOLOR® HE Phosphate	CO	0.0 · 0.05 · 0.10 · 0.15 · 0.20 · 0.3 · 0.4 · 0.6 · 0.8 · 1.0 mg/L P	300	920082
■ VISOCOLOR® HE Phosphate (DEV)	CO	0.0 · 0.01 · 0.02 · 0.03 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 · 0.25 mg/L P	100	920080
■ VISOCOLOR® Powder Pillows Phosphate 4)	PP	0.02-4.5 mg/L PO ₄ ³⁻	100	936228
■ NANOCOLOR® ortho- and total Phosphate 50	П	10.0–50.0 mg/L P	19	985079
■ NANOCOLOR® ortho- and total Phosphate 45	П	5.0–50.0 mg/L P	20	985055
■ NANOCOLOR® ortho- and total Phosphate 15	П	0.30–15.00 mg/L P	20	985080
■ NANOCOLOR® ortho- and total Phosphate 5	П	0.20-5.00 mg/L P	20	985081
■ NANOCOLOR® ortho- and total Phosphate 1	П	0.05-1.50 mg/L P	20	985076
■ NANOCOLOR® ortho- and total Phosphate LR 1	П	0.05-0.50 mg/L P	20	985095
■ NANOCOLOR® ortho-Phosphate	ST	0.2–17 mg/L PO ₄ -P	500	91878
■ NANOCOLOR® ortho-Phosphate	ST	0.04-6.5 mg/L PO ₄ -P	500	91877

¹⁾ Also suitable for photometrical evaluation on photometers PF-3, PF-12Plus and / or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.

³ Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on QUANTOFIX® Relax can differ from visual range.
4 Only photometrically evaluable, with photometers NANOCOLOR® VIS II, NANOCOLOR® VIVIS II, NANOCOLOR® Advance, PF-3 and / or PF-12 Plus.

pH value

The pH is a measure of the acidity or alkalinity of an aqueous solution. It is defined as the negative decadic logarithm of the hydrogen ion concentration.

Product	Platform	Measuring range	Number of tests	REF
■ pH test papers see corresponding chapter (from page 50)	рН			
■ VISOCOLOR® alpha pH 5–9	CO	pH: 5.0·5.5·6.0·6.5·7.0·7.5·8.0·8.5·9.0	200	935075
■ VISOCOLOR® ECO pH 4.0-9.0	CO	pH: 4.0·5.0·6.0·6.5·7.0·7.5·8.0·8.5·9.0	450	931066
■ VISOCOLOR® ECO pH 6.0-8.2	CO	pH: 6.1–8.4	150	931270
■ VISOCOLOR® HE pH 4.0–10.0	CO	pH: 4.0 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0 · 10.0	500	920074
■ VISOCOLOR® Powder Pillows pH 4)	PP	pH: 6.2–8.2	100	936222
NANOCOLOR® pH 6.5-8.2	ТТ	pH: 6.5–8.2	100	91872

POC (polyoxycarboxylic acids)

POCs are used in boiler feed water to prevent lime deposits.

Product	Platform	Measuring range	Number of tests	REF
NANOCOLOR® POC 200	Π	20–200 mg/L POC AS 2020 / 20–200 mg/L POC HS 2020 / 20–200 mg/L Polystabil® DK / 2–40 mg/L Polystabil® KWI	20	985070

Potassium (K+)

Potassium is an essential element for nutrition. Water-soluble potassium compounds are used as fertilizers and therefore have a great importance in agriculture.

Product	Platform	Measuring range	Number of tests	REF
Potassium test paper	QT	> 250 mg/L K ⁺	200	90727
■ QUANTOFIX® Potassium	HT	0 · 200 · 400 · 700 · 1000 · 1500 mg/L K ⁺	100	91316
■ VISOCOLOR® ECO Potassium 1)	CO	2·3·4·6·8·10·15 mg/L K ⁺	60	931032
■ NANOCOLOR® Potassium 50	П	2–50 mg/L K ⁺	20	985045
1) Also suitable for photometrical evaluation on photomete	ors PE-3 PE-12 ^{Plus} and /or	NANOCOLOR® Advance. Measuring range can differ in photometrical e	valuation	

NANOCOLOR® VARIO 4 Heating block for reliable digestions Experience versatility ■ Touch screen with intuitive menu guidance Short warm-up times and high temperature stability ■ Internal quality control via NANOCOLOR® T-Set ■ COD, total-N and total-P within 30 minutes

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits / PP: Powder Pillows TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests / RK: NANOCOLOR® ECO reagent kits

Parameters A-Z

Proteins

Proteins are easily detected on surfaces and can be used as an indication of incomplete cleaning in food processing companies.

Product	Platform	Measuring range	Number of tests	REF
■ INDIPRO	QT	> 50 µg BSA (bovine serum albumin)	60	90765

Quaternary ammonium compounds (QUATs)

Quaternary ammonium compounds are widely used for disinfection of medical devices and surfaces. In addition, they are also used as biocides in cooling circuits.

Product	Platform	Measuring range	Number of tests	REF
■ INDIQUAT	HT	on request		909000
■ QUANTOFIX® QUAT	HT	$0 \cdot 10 \cdot 25 \cdot 50 \cdot 100 \cdot 250 \cdot 500 \cdot 1000 \text{ mg/L benzalkonium chloride}$	100	91337

Residual hardness

See hardness (page 34)

SAC (Spectral Absorbance Coefficient)

The Spectral Absorbance Coefficient (SAC), is a total parameter for the measurement of the dissolved organic substances. The SAC measurements are carried out in the photometer with preprogrammed special methods. No separate test kits are needed for these measurements. The spectral absorbance coefficient is typically measured at 254 nm and 436 nm.

Product	Platform	Measuring range	Number of tests	REF
■ SAC	ST	0.1–150.0 ¹ /m	_	_

Silica/Silicon (Si)

Depending on the geology, silica can be present in fresh water. In heating systems it can form dangerous silicate deposits which can lead to severe damages.

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® ECO Silica 1)	CO	$0 \cdot 0.2 \cdot 0.4 \cdot 0.6 \cdot 1.0 \cdot 1.5 \cdot 2.0 \cdot 2.5 \cdot 3.0 \text{ mg/L SiO}_2$	80	931033
■ VISOCOLOR® ECO Silica HR 200 ²⁾	CO	10-200 mg/L SiO ₂	100	931234
■ VISOCOLOR® HE Silicon	CO	0.0 · 0.01 · 0.02 · 0.03 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 mg/L Si	120	920087
■ VISOCOLOR® Powder Pillows Silica LR ^{4) 5)}	PP	0.02-2.10 mg/L SiO ₂	100	936224
■ VISOCOLOR® Powder Pillows Silica HR 4)	PP	2–210 mg/L SiO ₂	100	936225
■ <i>NANOCOLOR®</i> Silica	ST	0.01-10.0 mg/L Si	250	91848

¹⁾ Also suitable for photometrical evaluation on photometers PF-3, PF-12^{Pk/s} and / or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.

²⁾ Only photometrically evaluable, with photometers PF-3 and/or PF-12^{Plus}.

⁴⁾ Only photometrically evaluable, with photometers NANOCOLOR® VIS II, NANOCOLOR® UV/VIS II, NANOCOLOR® Advance, PF-3 and/or PF-12^{Plus}.

[&]quot;*Only photometrically evaluable, with photometers NANOCOLOA" VIS II, NANOCOLOA" VIS II, NANOCOLOA" or II, NANOCOLOA" Adv 5) Measuring range for photometric evaluation on NANOCOLOA® VIS II. Range on other photometers can be different.

Silver (Ag+)

The precious metal silver is used in jewelry making, but also for batteries and mirrors. At low concentrations it acts also as a disinfectant for drinking water.

Product	Platform	Measuring range	Number of tests	REF
Silver test paper	QT	> 20 mg/L Ag ⁺	200	90732
■ Ag-Fix	HT	Silver: $0 \cdot 0.5 \cdot 1 \cdot 2 \cdot 3 \cdot 5 \cdot 7 \cdot 10$ g/L Ag ⁺ pH: $4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$	100	90741
■ QUANTOFIX® Silver	HT	0 · 1 · 2 · 3 · 5 · 7 · 10 g/L Ag ⁺	100	91350
■ NANOCOLOR® Silver 3	П	0.20–3.00 mg/L Ag ⁺	20	985049

Sludge activity / TTC

The biochemical activity of sludge is an important parameter for the control of a sewage treatment plant.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® TTC 150	П	5–150 µg TPF	20	985890

Sperm

See Phosphatase (page 42)

Starch

Starch is a polysaccharide and therefore a carbohydrate. The determination of starch is of special interest in food industry.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® Starch 100	TT	5–100 mg/L starch	19	985085

Sulfate (SO₄²⁻)

Sulfate is present in natural water and has an impact on its taste and smell. Therefore, it is controlled both in drinking water treatment and in food industry.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Sulfate	HT	$<$ 200 \cdot > 400 \cdot > 800 \cdot > 1200 \cdot > 1600 mg/L $SO_4^{\ 2-}$	100	91329
■ VISOCOLOR® ECO Sulfate	CO	$25 \cdot 30 \cdot 35 \cdot 40 \cdot 50 \cdot 60 \cdot 70 \cdot 80 \cdot 100 \cdot 120 \cdot 150 \cdot 200 \text{ mg/L SO}_4^{2-}$	100	931092
■ VISOCOLOR® Powder Pillows Sulfate 4)	PP	15-200 mg/L SO ₄ ²⁻	100	936223
■ NANOCOLOR® Sulfate 1000	TT	200-1000 mg/L SO ₄ ²⁻	20	985087
■ NANOCOLOR® Sulfate LR 200	ТТ	20–200 mg/L SO ₄ ²⁻	20	985062
■ NANOCOLOR® Sulfate MR 400	П	40-400 mg/L SO ₄ ²⁻	20	985060
■ NANOCOLOR® Sulfate HR 1000	П	200-1000 mg/L SO ₄ ²⁻	20	985063
⁴⁾ Only photometrically evaluable, with photometers NANOCOLO	DR® VIS II, NANOCC	DLOR® U//vis II, NANOCOLOR® Advance, PF-3 and / or PF-12 ^{Plus} .		

pH: Products for pH determination / QT: Qualitative test papers / HT: Semi-quantitative test strips / CO: Colorimetric test kits / TI: Titrimetric test kits / PP: Powder Pillows TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests / RK: NANOCOLOR® ECO reagent kits

Parameters A-Z

Sulfide (S²⁻)

Sulfides are produced e.g. in the rotting of organic material. High concentrations of sulfides in waste water can cause damage to pipings and an unpleasant smell.

Platform	Measuring range	Number of tests	REF
QT	$>$ 5 mg/L $\rm H_2S$ or $\rm S^{2-}$	Reel, 5 m length Refill pack 100 strips	90744 90745 90746
QT	$>$ 5 mg/L H $_2$ S or S $^{2-}$	Reel, 5 m length	90761
CO	0.1 · 0.2 · 0.3 · 0.4 · 0.5 · 0.6 · 0.7 · 0.8 mg/L S ²⁻	90	931094
TT	0.05-3.00 mg/L S ²⁻	20	985073
ST	0.01–3.0 mg/L S ^{2–}	250	91888
	QT	QT $> 5 \text{ mg/L H}_2\text{S or S}^{2-}$ QT $> 5 \text{ mg/L H}_2\text{S or S}^{2-}$ CO $0.1 \cdot 0.2 \cdot 0.3 \cdot 0.4 \cdot 0.5 \cdot 0.6 \cdot 0.7 \cdot 0.8 \text{ mg/L S}^{2-}$ TT $0.05-3.00 \text{ mg/L S}^{2-}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

¹⁾ Also suitable for photometrical evaluation on photometers PF-3, PF-12 Plus and / or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.

Sulfite (SO₃²⁻)

Sulfite determination is important in wine industry for the control of production and quality of wine. Sulfite is used as an oxygen scavenger in process and boiler water. Here sulfite tests are carried out in order to avoid overdosing. These tests are also used to control the sulfite content of foods in which sulfur compounds are used as a preservative.

Product	Platform	Measuring range	Number of tests	REF
Potassium iodide starch paper	QT	$>$ 5 mg/L SO_2	Reel, 5 m length Refill pack 100200	90754 90755 90756 90758
Sulfite test paper	QT	> 10 mg/L Na ₂ SO ₃	100	90763
QUANTOFIX® Sulfite 3)	HT	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L SO ₃ ²⁻	100	91306
■ VISOCOLOR® ECO Sulfite	TI	1 drop equals 1 mg/L SO ₃ ²⁻	60	931095
■ VISOCOLOR® HE Sulfite SU 100	TI	2-100 mg/L SO ₃ ²⁻	100	915008
NANOCOLOR® Sulfite 100	TT	5–100 mg/L SO ₃ ^{2–}	19	985090
NANOCOLOR® Sulfite 10	TT	0.2-10.0 mg/L SO ₃ ²⁻	20	985089

³⁾ Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on the QUANTOFIX® Relax can differ from visual range.

Surfactants (detergents)

Surfactants are surface-active substances which are widely used in various industries, by soap manufacturers, and also in private households. Generally, one distinguishes between anionic, cationic, and nonionic surfactants. The concentration in municipal waste water can reach high levels, which are caused for example by laundry surfactants.

Product	Platform	Measuring range	Number of tests	REF
■ VISOCOLOR® ECO Detergents, anionic	CO	0.1 · 0.25 · 0.5 · 1.0 · 2.0 · 5.0 mg/L MBAS	50	931050
■ VISOCOLOR® ECO Detergents, cationic	CO	0 · 1 · 3 · 5 · 10 · 15 · 20 mg/L CTAB	50	931051
■ NANOCOLOR® Anionic surfactants 4	П	0.20-4.00 mg/L MBAS	20	985032
■ NANOCOLOR® Cationic surfactants 4	П	0.20-4.00 mg/L CTAB	20	985034
■ <i>NANOCOLOR®</i> Nonionic surfactants 15	П	0.3–15.0 mg/L Triton® X–100	20	985047
■ NANOCOLOR® Detergents, anionic	ST	0.02-5.0 mg/L MBAS	40	91832
■ NANOCOLOR® Detergents, cationic	ST	0.05-5.0 mg/L CTAB	100	91834

pH: Products for pH determination/QT: Qualitative test papers/HT: Semi-quantitative test strips/CO: Colorimetric test kits/TI: Titrimetric test kits/PP: Powder Pillows TT: NANOCOLOR® tube tests/ST: NANOCOLOR® standard tests/MB: Microbiological tests/RK: NANOCOLOR® ECO reagent kits

Thiocyanate (SCN⁻)

Thiocyanate-containing waste water can form toxic cyanogen chloride if chlorine is added.

Product	Platform	Measuring range	Number of tests	REF
■ <i>NANOCOLOR</i> ® Thiocyanate 50	TT	0.5-50.0 mg/L SCN ⁻	20	985091

Tin (Sn²⁺)

Tin is used as an alloying element e.g. in tinplate. Furthermore, soldering tin consists of more than 95 % tin nowadays. The food industry controls how much tin from a can is liberated into the food, since it can adversely affect the taste.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX [®] Tin	HT	0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L Sn²+	100	91309
■ NANOCOLOR® Tin 3	П	0.10–3.00 mg/L Sn	18	985097

TOC (total organic carbon)

The TOC value is a measure of all organic substances in waste water. It is easier to be determined instrumentally than the COD or BOD value. A conversion of the TOC value into COD is generally not readily possible.

Product	Platform	Measuring range	Number of tests	REF
■ NANOCOLOR® TOC 300	Π	20–300 mg/L C	20	985078
■ NANOCOLOR® TOC 30	П	2.0–30.0 mg/L C	20	985075

Total hardness

See Hardness (page 34)

Total sugar

Sugar is a key nutrient in food. In the context of the QUANTOFIX® test, total sugar means the sum of glucose and fructose. It is a quality criterion for potatoe processing and in beverage industry.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Total sugar ³⁾	HT	0 · 55 · 100 · 250 · 400 · 600 · 800 mg/L fructose / glucose	100	91352

³⁾ Also suitable for evaluation on QUANTOFIX® Relax. Measuring range on the QUANTOFIX® Relax can differ from visual range.

Toxicity

With the help of luminescent bacteria, the toxic effects of different substances can be investigated.

Product	Platform	Measuring range	Number of tests	REF
■ Luminous bacteria toxicity tests BioFix® Lumi	MB	-		940 945

pH: Products for pH determination/QT: Qualitative test papers/HT: Semi-quantitative test strips/CO: Colorimetric test kits/TI: Titrimetric test kits/PP: Powder Pillows TT: NANOCOLOR® tube tests / ST: NANOCOLOR® standard tests / MB: Microbiological tests / RK: NANOCOLOR® ECO reagent kits

Parameters A–Z

TSS (Total Suspended Solids)

The photometric determination of total suspended solids provides a quick and easy method that does not require any filtration nor any heating or gravimetric processes. The USEPA, Standard Methods and DIN EN norms (DIN EN 872) specify the filtration/gravimetric method to determine total suspended solids. Therefore, the photometric method is especially used during in-process analysis.

Product	Platform	Measuring range	Number of tests	REF
■ TSS	П	30 - 750 mg/L at 860 nm with Spectrophotometer	_	_
		70 – 750 mg/L at 690 nm with <i>NANOCOLOR®</i> 500 D, 400 D, 350 D and PF-12		

TTC/Sludge activity

See Sludge activity/TTC (page 45)

Turbidity

Turbidity is caused by small non-dissolved particles. These particles cause absorption, scattering and reflection of incident light. Turbidity is a frequently underestimated source of error in photometry. It affects the reading and is often visually not easy to recognize. Even a slight turbidity, imperceptible to the human eye, can extremely falsify analytical results. The turbidity measurements are carried out in the photometer with preprogrammed special methods. No separate test kits are needed for these measurements.

Product	Platform	Measuring range	Number of tests	REF
■ Turbidity (Formazin / DIN)	ST	1–100 TE/F (=FAU) / 0.5–40 ¹ /m	=	_
■ Turbidity (NTU)	TT	0.1–1000 NTU	-	_

Udder inflammation

See Mastitis (page 37)

Vat dyes

See Dithionite (page 32)

Water (H₂O)

Various tests enable the detection of water in different applications.

Product	Platform	Measuring range	Number of tests	REF
■ Waterfinder test paper	QT	Traces of water in non-polar solvents	Reel, 7 m length	90630
■ Watesmo	QT	Traces of water in non-polar solvents	Reel, 5 m length	90609
■ Wator	QT	Traces of water in butter	50	90610

Water hardness

See Hardness (page 34)

Zinc (Zn²⁺)

Zinc salts are used in electroplating for the galvanic zinc coating of steel in order to achieve an effective rust prevention. Also in cooling waters, zinc salts are applied as corrosion protection agents.

Product	Platform	Measuring range	Number of tests	REF
■ QUANTOFIX® Zinc	HT	$0 \cdot 2 \cdot 5 \cdot 10 \cdot 25 \cdot 50 \cdot 100 \text{ mg/L Zn}^{2+}$	100	91310
■ VISOCOLOR® ECO Zinc 1)	CO	0 · 0.5 · 1 · 2 · 3 mg/L Zn ²⁺	120	931098
■ NANOCOLOR® Zinc 4	TT	0.10-4.00 mg/L Zn ²⁺	20	985096
■ NANOCOLOR® Zinc 6	ТТ	0.20-6.00 mg/L Zn ²⁺	20	985042
■ NANOCOLOR® Zinc	ST	0.02-3.0 mg/L Zn ²⁺	250	91895
		_		

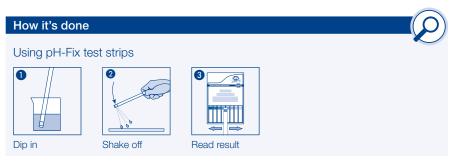
¹⁾ Also suitable for photometrical evaluation on photometers PF-3, PF-12^{Plus} and / or NANOCOLOR® Advance. Measuring range can differ in photometrical evaluation.

Zirconium (Zr⁴⁺)

Zirconium is used in various applications as a replacement for chromate. It is also used as an adhesion promoter in surface treatment.

Product	Platform	Measuring range	Number of tests	REF
Zirconium test paper	QT	$> 20 \text{ mg/L Zr}^{4+}$	100	90721
■ NANOCOLOR® Zirconium 100	TT	5–100 mg/L Zr	20	985001

ph tests	
pH-Fix	52
PEHANON [®]	
Universal- and indicator papers	
Duotest and Tritest	
Other pH indicators	59
Semi-quantitative test strips QUANTOFIX®	
Qualitative test papers Test papers without color chart	68



pH-Fix

Unmatched pH test strips

For many years untrained users as well as analytical professionals appreciate the experience of easy pH testing with pH-Fix. In contrast to common indicator papers, the indicator dyes in pH-Fix test strips are chemically bound to the test pads. This patented technology prevents bleeding of the dyes and therefore a contamination of the sample, even in highly alkaline solutions. The fixation enables the strips to remain in solution over extended periods of time allowing a safe pH determination even in weakly buffered solutions.

Optimized packages

In the classic packaging, the smart corner of the box safely prevents jamming of test strips. By simply tilting the box the strips fall easily into the smart corner allowing the closing with maximal comfort.

Especially users in the medical sector appreciate the robust PlopTop tube. The tube is higher than the length of the strips and can be easily opened and closed with the thumb of the holding hand. There is no risk of jamming the strip. The tube is virtually unbreakable and stands firmly on any flat surface.

CE-mark for medical applications

Some pH-Fix test strips are tested and approved for medical applications and carry a CE-mark for in-vitro-diagnostics 98/78/EG (for details see table on page 54). They meet the special demands of health care professionals and ensure safe results for medical pH testing.

Automatic evaluation with the QUANTOFIX® Relax

The strip reader QUANTOFIX® Relax (see page 154) allows the easy and reliable documentation of pH testing. The system provides objective and quantitative results. It allows printing and storing of test data including time and sample ID. Test strips covering the complete pH range can be evaluated using the QUANTOFIX® Relax (for details see table on page 54).

Good to know

Many customers receive our pH-Fix test strips as an OEM product.

Rapid

- Dip & Read
- Results in seconds
- Always ready for use

Easy

- No calibration
- No maintenance
- No accessories

Reliable

- Long handle for sufficient hand-sample-distance
- Brilliant color chart for precise readings
- Automatic evaluation with QUANTOFIX® Relax for safe documentation

Good to know

Many pH-Fix test strips can be also evaluated on the strip reader QUANTOFIX® Relax (see page 154).

Ordering information

Test	REF	Measuring range (visual)	Measuring range (instrumental) 1)
0 –14	92110	0 • 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14	1–13
■ 0.0–6.0	92115	0 • 0.5 • 1.0 • 1.5 • 2.0 • 2.5 • 3.0 • 3.5 • 4.0 • 4.5 • 5.0 • 5.5 • 6.0	0.5–6.0
2.0-9.0	92118	2.0 · 2.5 · 3.0 · 3.5 · 4.0 · 4.5 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	2.0–9.0
4.5-10.0	92120	4.5 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0 · 9.5 · 10.0	4.5–10.0
6.0-10.0	92122	6.0 • 6.4 • 6.7 • 7.0 • 7.3 • 7.6 • 7.9 • 8.2 • 8.4 • 8.6 • 8.8 • 9.1 • 9.5 • 10.0	6.0–10.0
7.0–14.0	92125	7.0 · 7.5 · 8.0 · 8.5 · 9.0 · 9.5 · 10.0 · 10.5 · 11.0 · 11.5 · 12.0 · 12.5 · 13.0 · 13.5 · 14.0	7.0–13.5
0.3-2.3	92180	0.3 · 0.7 · 1.0 · 1.3 · 1.6 · 1.9 · 2.3	-
1.7–3.8	92190	1.7 · 2.0 · 2.3 · 2.6 · 2.9 · 3.2 · 3.5 · 3.8	-
3.1-8.3	92135	3.1 · 3.5 · 3.9 · 4.3 · 4.7 · 5.1 · 5.5 · 5.9 · 6.3 · 6.7 · 7.1 · 7.5 · 7.9 · 8.3	-
3.6-6.1	92130	3.6 · 4.1 · 4.4 · 4.7 · 5.0 · 5.3 · 5.6 · 6.1	3.6–6.1
4.0-7.0	92137	4.0 • 4.4 • 4.7 • 5.0 • 5.3 • 5.5 • 5.8 • 6.1 • 6.5 • 7.0	-
5.1–7.2	92140	5.1 · 5.4 · 5.7 · 6.0 · 6.3 · 6.6 · 6.9 · 7.2	-
6.0-7.7	92150	6.0 • 6.4 • 6.7 • 7.0 • 7.3 • 7.7	6.0–7.7
7.5–9.5	92160	7.5 · 7.9 · 8.2 · 8.4 · 8.6 · 8.8 · 9.1 · 9.5	-
7.9–9.8	92170	7.9 • 8.3 • 8.6 • 8.9 • 9.1 • 9.4 • 9.8	-
■ 0-14 PT	92111	0.1.2.3.4.5.6.7.8.9.10.11.12.13.14	1–13
■ 3.6–6.1 PT	92131	3.6 · 4.1 · 4.4 · 4.7 · 5.0 · 5.3 · 5.6 · 6.1	3.6–6.1
■ 4.5–10.0 PT	92121	4.5 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0 · 9.5 · 10.0	4.5–10.0

CE/gastric juice: According to IVD directive 98/79/EG approved for pH determination in gastric juice, for professional use only.

CE/vaginal secretion: According to IVD directive 98/79/EG approved for pH determination in vaginal secretion, for professional use only.

1) Together with QUANTOFIX® Relax, the test strips may not be used for any medical application.

			* Keliat	, sot		ilice)
Number of tests	Shelf life	OURT	Charles of the control of the contro	Na Pot Co	Right Child	the state of the s
100	4 years					0–14
100	4 years					0.0-6.0
100	4 years					2.0-9.0
100	4 years					4.5–10.0
100	4 years					6.0–10.0
100	4 years					7.0–14.0
100	4 years					0.3-2.3
100	4 years					1.7–3.8
100	4 years					3.1-8.3
100	4 years					3.6-6.1
100	4 years					4.0-7.0
100	4 years					5.1–7.2
100	4 years					6.0–7.7
100	4 years					7.5–9.5
100	4 years					7.9–9.8
100	4 years					0–14 PT
100	4 years					3.6-6.1 PT
100	4 years					4.5–10.0 PT

PEHANON®

pH determination in colored samples

PEHANON® test strips unify pH indicator and reference color chart on one strip. Any sample color has the same effect on both, the reference colors and the reactive pad, allowing unadulterated pH reading even in colored solutions.

Safe testing of hazardous samples

An invisible hydrophobic barrier just above the top color field prevents migration of the sample. The handle remains dry and clean and the user is safely protected from contamination due to capillary rise.

No separate color chart needed

PEHANON® test strips can be read without a separate color chart. Workers in production can use single strips instead of complete packs making the product very economical.

Ordering information

O						
Test	REF	Measuring range	Number of Tests	Shelf life		
■ pH 1–12	90401	1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12	200	3 years		
■ pH 0–1.8	90411	0 · 0.3 · 0.6 · 0.8 · 1.0 · 1.2 · 1.5 · 1.8	200	3 years		
■ pH 1.0-2.8	90412	1.0 · 1.3 · 1.6 · 1.8 · 2.0 · 2.2 · 2.5 · 2.8	200	3 years		
■ pH 1.8–3.8	90413	1.8 · 2.1 · 2.4 · 2.7 · 3.0 · 3.2 · 3.5 · 3.8	200	3 years		
■ pH 2.8–4.6	90414	2.8 · 3.1 · 3.4 · 3.6 · 3.8 · 4.0 · 4.3 · 4.6	200	3 years		
■ pH 3.8–5.5	90415	3.8 · 4.0 · 4.2 · 4.4 · 4.6 · 4.9 · 5.2 · 5.5	200	3 years		
■ pH 4.0–9.0	90424	4.0 • 4.5 • 5.0 • 5.5 • 6.0 • 6.5 • 7.0 • 7.5 • 8.0 • 8.5 • 9.0	200	3 years		
■ pH 5.2–6.8	90416	5.2 · 5.5 · 5.7 · 5.9 · 6.1 · 6.3 · 6.5 · 6.8	200	3 years		
■ pH 6.0–8.1	90417	6.0 · 6.3 · 6.6 · 6.9 · 7.2 · 7.5 · 7.8 · 8.1	200	3 years		
■ pH 7.2–8.8	90419	7.2 · 7.4 · 7.6 · 7.8 · 8.0 · 8.2 · 8.5 · 8.8	200	3 years		
■ pH 8.0–9.7	90420	8.0 · 8.2 · 8.4 · 8.6 · 8.8 · 9.1 · 9.4 · 9.7	200	3 years		
■ pH 9.5–12.0	90421	9.5 · 10.0 · 10.5 · 11.0 · 11.5 · 12.0	200	3 years		
■ pH 10.5–13.0	90422	10.5 · 11.0 · 11.5 · 12.0 · 12.5 · 13.0	200	3 years		
■ pH 12.0–14.0	90423	12.0 · 12.5 · 13.0 · 13.5 · 14.0	200	3 years		

Universal- and indicator papers

pH indicator papers - standard for many applications

pH indicator papers have been available for decades and are the standard for many applications. For each pH value these papers show a single color which can be matched with the color scale at intervals of 0.2-1 pH units. The indicator papers come in plastic reels that ensure long-term stability and protection against many external influences. They will be always ready-to-use when needed.

MACHEREY-NAGEL also controls the production of the raw papers which ensures – in combination with our ISO 9001 QC system – the high quality of the indicator papers.

The colors of the scales are specially mixed to perfectly match the reaction color of the indicator papers. This makes the reading of results easy and accurate.

Good to know

We produce pH indicator booklets for pharmaceutical industries with a CE-marking for urine diagnostics.

Ordering information

Test	REF	REF refill	Measuring range	Presentation	Shelf life
■ pH 1–11	90201	90202	1.2.3.4.5.6.7.8.9.10.11	Reel of 5 m length and 7 mm width	3 years
■ pH 1–11	90203	=	1.2.3.4.5.6.7.8.9.10.11	Booklet with 100 strips 10 x 70 mm	3 years
■ pH 1–14	90204	90224	1 · 2 · 3 · 5 · 6 · 7 · 8 · 9 · 10 · 12 · 14	Reel of 5 m length and 7 mm width	3 years
■ pH 0.5–5.5	90205	90225	0.5 • 1.0 • 1.5 • 2.0 • 2.5 • 3.0 • 3.5 • 4.0 • 4.5 • 5.0 • 5.5	Reel of 5 m length and 7 mm width	3 years
■ pH 3.8–5.8	90206	90226	< 3.8 · 3.8 · 4.1 · 4.3 · 4.5 · 4.7 · 4.9 · 5.2 · 5.5 · 5.8 · > 5.8	Reel of 5 m length and 7 mm width	3 years
■ pH 4.0–7.0	90207	90227	4.0 · 4.3 · 4.6 · 4.9 · 5.2 · 5.5 · 5.8 · 6.1 · 6.4 · 6.7 · 7.0	Reel of 5 m length and 7 mm width	3 years
■ pH 5.4–7.0	90208	90228	< 5.4 · 5.4 · 5.7 · 6.0 · 6.2 · 6.4 · 6.7 · 7.0 · > 7.0	Reel of 5 m length and 7 mm width	3 years
■ pH 5.5–9.0	90209	90229	5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	Reel of 5 m length and 7 mm width	3 years
■ pH 6.4–8.0	90210	90230	< 6.4 · 6.4 · 6.6 · 6.8 · 7.0 · 7.2 · 7.4 · 7.6 · 7.8 · 8.0 · > 8.0	Reel of 5 m length and 7 mm width	3 years
■ pH 7.2–9.7	90211	90231	< 7.2 · 7.2 · 7.5 · 7.8 · 8.1 · 8.4 · 8.7 · 9.0 · 9.3 · 9.7 · > 9.7	Reel of 5 m length and 7 mm width	3 years
■ pH 8.0–10.0	90212	90232	8.0 · 8.2 · 8.4 · 8.7 · 9.0 · 9.2 · 9.6 · 10.0	Reel of 5 m length and 7 mm width	3 years
■ pH 9.0–13.0	90213	90233	9.0 • 9.5 • 10.0 • 10.5 • 11.0 • 11.5 • 12.0 • 12.5 • 13.0	Reel of 5 m length and 7 mm width	3 years
■ pH 12.0–14.0	90214	90234	12.0 • 12.5 • 13.0 • 13.5 • 14.0	Reel of 5 m length and 7 mm width	3 years
refill: Refill pack					

Duotest and Tritest

pH papers with multiple indicator zones

By the combination of several indicators on one test paper, a better recognition between different pH values is achieved. This makes the correct pH reading easier.

Duotest - two indicator zones for higher accuracy

Duotest indicator papers combine two different indicator zones on a single strip. The zones are separated by a hydrophobic barrier, which effectively prevents mixing of the reaction colors and increases the mechanical stability.

Tritest – three indicator zones for highest precision

Tritest indicator paper has three different indicator zones on a single paper. The three zones guarantee optimal color differences and safe determination of in-between values. Tritest indicator paper is available for a pH range from 1–11 and feature 1 pH unit increments.

In Tritest L indicator paper, two hydrophobic barriers separate the indicator zones. Even in strongly alkaline solutions, the colors of the zones do not mix.

Ordering information

Duotest

Test	REF	REF refill	Measuring range	Presentation	Shelf life
■ pH 1–12	90301	90311	$1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10 \cdot 11 \cdot 12$	Reel of 5 m length and 10 mm width	3 years
■ pH 1.0–4.3	90302	90312	1.0 • 1.3 • 1.6 • 1.9 • 2.2 • 2.5 • 2.8 • 3.1 • 3.4 • 3.7 • 4.0 • 4.3	Reel of 5 m length and 10 mm width	3 years
■ pH 3.5–6.8	90303	90313	3.5 · 3.8 · 4.1 · 4.4 · 4.7 · 5.0 · 5.3 · 5.6 · 5.9 · 6.2 · 6.5 · 6.8	Reel of 5 m length and 10 mm width	3 years
■ pH 5.0–8.0	90304	90314	5.0 · 5.3 · 5.6 · 5.9 · 6.2 · 6.5 · 6.8 · 7.1 · 7.4 · 7.7 · 8.0	Reel of 5 m length and 10 mm width	3 years
■ pH 7.0–10.0	90305	90315	7.0 • 7.3 • 7.6 • 7.9 • 8.2 • 8.5 • 8.8 • 9.1 • 9.4 • 9.7 • 10.0	Reel of 5 m length and 10 mm width	3 years
■ pH 9.5–14.0	90306	90316	9.5 • 10.0 • 10.5 • 11.0 • 11.5 • 12.0 • 12.5 • 13.0 • 13.5 • 14.0	Reel of 5 m length and 10 mm width	3 years
refill: Refill pack					

Tritest

Test	REF	REF refill	Measuring range	Presentation	Shelf life
■ pH 1–11	90501	90502	1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11	Reel of 5 m length and 10 mm width	3 years
■ L pH 1–11	90510	90511	1.2.3.4.5.6.7.8.9.10.11	Reel of 6 m length and 14 mm width	3 years

Other pH indicators

pH papers without color chart and indicator solutions

For some specific analytical questions, qualitative pH papers or indicator solutions are used.

Simplest acid/base determination

Qualitative pH papers without color chart are simple, completely impregnated indicator papers. They indicate if the pH of a solution is above or below the transition point (color change) and are useful to distinguish between acids and bases.

pH determinations in weakly buffered solutions

UNISOL indicator solutions are used for pH determination in pure water, in surface waters and in very dilute acids or bases. An indicator solution is added to the sample and the reaction color is compared with a color scale. Therefore, they allow the easy and reliable pH determination in weakly buffered solutions.

Ordering information

pH papers without color scale

Test	REF	REF refill	Color change / pH	Presentation	Shelf life	GHS
■ Brilliant yellow paper	90701	_	yellow \rightarrow red / 6.7–7.9	Box of 200 strips 20 x 70 mm	2 years	
Congo paper MN 816 N	90702	90703	red → blue / 5.0-3.0	Reel of 5 m length and 7 mm width	2 years	
Congo paper MN 616 T	90704	-	red → blue / 5.0-3.0	Box of 200 strips 20 x 70 mm	2 years	
Congo paper MN 260 HE	90705	-	red → blue / 5.0-3.0	Box of 200 strips 20 x 70 mm	2 years	
Litmus paper blue	91106	91116	blue → red / 8.0-5.0	Reel of 5 m length and 7 mm width	3 years	
Litmus paper blue	91126	_	blue → red / 8.0-5.0	Booklet of 100 strips 10 x 70 mm	3 years	
Litmus paper neutral	91107	91117	red → violet-blue / 5.0-8.0	Reel of 5 m length and 7 mm width	3 years	
Litmus paper neutral	91127	_	red → violet-blue / 5.0-8.0	Booklet of 100 strips 10 x 70 mm	3 years	
Litmus paper red	91108	91118	red → blue / 5.0-8.0	Reel of 5 m length and 7 mm width	3 years	
Litmus paper red	91128	-	red → blue / 5.0-8.0	Booklet of 100 strips 10 x 70 mm	3 years	
■ Nitrazine yellow paper	90711	_	yellow → blue-violet / 6.0–7.0	Box of 200 strips 20 x 70 mm	2 years	
Phenolphthalein paper	90712	90713	white → red / 8.3-10.0	Reel of 5 m length and 7 mm width	2 years	

refill: Refill pack

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

UNISOL

Test	REF	Measuring range	Presentation	Shelf life	GHS
■ 410, pH 4–10	91002	4.0 · 4.5 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0 · 9.5 · 10.0	1 bottle of 100 mL, color chart + cuvette	3 years	•
■ 113, pH 1–13	91031	1.2.3.4.5.6.7.8.9.10.11.12.13	1 bottle of 100 mL, color chart + cuvette	3 years	
Plastic cuvettes MN 13/72	91039	-	Pack of 5 rectangular cuvettes	-	

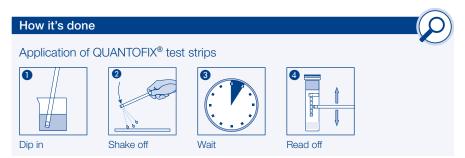
GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

QUANTOFIX®

Semi-quantitative test strips

QUANTOFIX® test strips meet all requirements of a modern rapid test. The color of the reactive pad changes depending on the concentration of an analyte in the sample. The evaluation is usually carried out visually by a comparison of the reaction color with a multi-stage color scale.

Easy analysis directly at the point of interest


Analytical professionals as well as occasional testers appreciate QUANTOFIX® test strips for the fast and easy analysis directly at the point of interest. Often, these tests are used to quickly check whether important parameters are in the desired range. They deliver an immediate result and thus enable a fast response.

Complete mini-lab

QUANTOFIX® tests are immediately ready-to-use. They do not require additional accessories. The test strips are intended for single use, maintenance or calibration are not required.

Quantitative, documented results with QUANTOFIX® Relax

The strip reader QUANTOFIX® Relax (see page 154) provides objective and quantitative results for many important parameters (see page 62). Measurement data including time, date and sample ID are printed, stored and can be transmitted to an information system. This allows the rapid and reliable documentation of test results, which proved to be especially useful for QC departments.

Good to know

Many customers receive our QUANTOFIX® test strips as OEM product.

Rapid

- Just Dip & Read
- Results within seconds
- Always ready for use

Easy

- No calibration
- No maintenance
- No accessories

Reliable

- Desiccant in the stopper for optimal protection of the strips against humidity
- Color chart confirmed with traceable standards
- Automatic evaluation with QUANTOFIX® Relax for safe documentation

Good to know

Many QUANTOFIX® test strips can be also evaluated on the strip reader QUANTOFIX® Relax (see page 154).

Ordering information

Test	REF	Measuring range (visual)	Measuring range (instrumental) 1)	Number of tests
Active oxygen	91349	0 · 4 · 8 · 15 · 25 mg/L KMPS	_	100
Aluminum	91307	0 · 5 · 20 · 50 · 200 · 500 mg/L Al ³⁺	-	100
■ Ammonium	91315	0 · 10 · 25 · 50 · 100 · 200 · 400 mg/L NH ₄ +	10-350 mg/L NH ₄ +	100
Arsenic 10	91334	0 · 0.01 · 0.025 · 0.05 · 0.1 · 0.5 mg/L As ^{3+/5+}	_	100
Arsenic 50	91332	0 · 0.05 · 0.1 · 0.5 · 1.0 · 1.7 · 3.0 mg/L As ^{3+/5+}	-	100
Arsenic Sensitive	91345	0 · 0.005 · 0.01 · 0.025 · 0.05 · 0.1 · 0.25 · 0.5 mg/L As ^{3+/5+}	-	100
EZ Arsenic Sensitive PP	91345.2	0 · 0.005 · 0.010 · 0.025 · 0.05 · 0.10 · 0.25 · 0.50 mg/L As ^{3+/5+}	_	100
Ascorbic acid	91314	0 · 50 · 100 · 200 · 300 · 500 · 700 · 1000 · 2000 mg/L vitamin C	25-1000 mg/L vitamin C	100
■ Calcium	91324	0 · 10 · 25 · 50 · 100 mg/L Ca²+	_	60
Carbonate hardness	91323	0·3.8·7.5·12.5·18.8·25.0 °e	_	100
Chloride	91321	0 · 500 · 1000 · 1500 · 2000 · ≥ 3000 mg/L Cl ⁻	_	100
Chlorine	91317	0 · 1 · 3 · 10 · 30 · 100 mg/L Cl ₂ (free)	-	100
Chlorine 500	91354	0 · 25 · 50 · 100 · 250 · 500 mg/L Cl ₂	-	100
Chlorine dioxide 15	91355	0 · 0.25 · 0.5 · 1 · 3 · 5 · 10 · 15 mg/L CIO ₂	_	50
Chlorine dioxide 3000	91357	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 · 1500 · 2000 · 2500 · 3000 mg/L ClO ₂	-	100
Chlorine Sensitive	91339	0 · 0.1 · 0.5 · 1 · 3 · 10 mg/L Cl ₂ (total)	0.1–10 mg/L Cl ₂	100
Chlorine Sensitive 1	91360	0 · 0.05 · 0.1 · 0.2 · 0.4 · 0.8 · 1.2 mg/L Cl ₂ (free)	-	50
Chromate	91301	0 · 3 · 10 · 30 · 100 mg/L CrO ₄ ²⁻	-	100
Cobalt	91303	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L Co ²⁺	-	100
Copper	91304	0 · 10 · 30 · 100 · 300 mg/L Cu ^{+/2+}	-	100
Copper Sensitive 5	91358	0 · 0.1 · 0.5 · 1.0 · 2.0 · 5.0 mg/L Cu ^{+/2+}	-	25
Cyanide	91318	0 · 1 · 3 · 10 · 30 mg/L CN⁻	-	100
■ EDTA	91335	0 · 100 · 200 · 300 · 400 mg/L EDTA	_	100
Formaldehyde	91328	0 · 10 · 20 · 40 · 60 · 100 · 200 mg/L HCHO	10-200mg/L HCHO	100
Glucose	91348	0 · 50 · 100 · 250 · 500 · 1000 · 2000 mg/L glucose	50-2000 mg/L glucose	100
Glutaraldehyde	91343	0 · 0.5 · 1.0 · 1.5 · 2.0 · 2.5 % glutaraldehyde	-	100
Iron Sensitive 1	91359	0 · 0.05 · 0.1 · 0.2 · 0.5 · 1.0 mg/L Fe ^{2+/3+}	-	25
LubriCheck	91336	0 · 15 · 50 · 75 · 130 · 200 mmol/L KOH	=	100
Molybdenum	91325	0 · 5 · 20 · 50 · 100 · 250 mg/L Mo ⁶⁺	-	100
Nickel	91305	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L Ni ²⁺	-	100
Nitrate 100	91351	Nitrate: $0.5 \cdot 10.25 \cdot 50.75 \cdot 100 \text{ mg/L NO}_3^-$ Nitrite: $0.0.5 \cdot 2.5 \cdot 10.25 \cdot 50 \text{ mg/L NO}_2^-$	Nitrate: 3–100 mg/L NO ₃ ⁻ Nitrite: 0.5–50 mg/L NO ₂ ⁻	100
Nitrate/Nitrite	91313	Nitrate: 0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L NO ₃ ⁻ Nitrite: 0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻	Nitrate: 10–500 mg/L NO ₃ ⁻ Nitrite: 0.5–80 mg/L NO ₂ ⁻	100
Nitrite	91311	0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻	0.5–80 mg/L NO ₂ -	100
Nitrite 3000	91322	0 · 0.1 · 0.3 · 0.6 · 1 · 2 · 3 g/L NO ₂ ⁻	-	100
■ Nitrite/pH	91338	Nitrite: 0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ ⁻ pH: 6.0 · 6.4 · 6.7 · 7.0 · 7.3 · 7.6 · 7.9 · 8.2 · 8.4 · 8.6 · 8.8 · 9.0 · 9.3 · 9.6	=	100
Peracetic acid 50	91340	$0 \cdot 5 \cdot 10 \cdot 20 \cdot 30 \cdot 50$ mg/L peracetic acid	5-50 mg/L peracetic acid	100
Peracetic acid 500	91341	0 · 50 · 100 · 200 · 300 · 400 · 500 mg/L peracetic acid	50-500 mg/L peracetic acid	100

¹⁾ Measuring range for instrumental evaluation with Quantofix Relax. ²⁾ Sets of 3 individually sealed test strips, pack of 50 sets. GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

	Method	Color change	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	· Kijio	· 	/x
			\Q ₁	Crit Relation		
2.5 years	Redox reaction	yellow → green				Active oxygen
2.5 years	Aurin tricarboxylic acid	pink → red				Aluminum
2.5 years	Nessler	bright yellow → orange				Ammonium
2.5 years	Modified Gutzeit test	white → yellow-brown				Arsenic 10
 2.5 years	Modified Gutzeit test	white → yellow-brown				Arsenic 50
2.5 years	Modified Gutzeit test	white → yellow-brown				Arsenic Sensitive
2.5 years	Modified Gutzeit test	white \rightarrow yellow-brown				EZ Arsenic Sensitive PP
2.5 years	Phosphomolybdenum blue	yellow → green-blue				Ascorbic acid
2.5 years	Glyoxal-bis(2-hydroxyaniline)	yellow→red				Calcium
2.5 years	Mixed indicator	bright green → blue				Carbonate hardness
2.5 years (2-8 °C)	Silver chromate	brown → yellow				Chloride
2.5 years	Redox reaction	white → red-violet				Chlorine
2.5 years	Redox reaction	white → blue-green to orange-brown				Chlorine 500
2 year	Redox reaction	colorless → pink				Chlorine dioxide 15
2.5 years	Redox reaction	yellow → dark green (field 1), colorless → brown-black (field 2)				Chlorine dioxide 3000
2.5 years	Redox reaction	yellow → violet				Chlorine Sensitive
2.5 years	Redox reaction/hole	white → blue-green				Chlorine Sensitive 1
2 years	Carbazide	white → violet				Chromate
2.5 years	Rhodanid	white → green-blue				Cobalt
2.5 years	Biquinoline	white → red-violet				Copper
2.5 years	Biquinoline / hole	white → red-violet				Copper Sensitive 5
2.5 years	Barbituric acid derivative	white → violet				Cyanide
2.5 years	Bismut-xylenolorange	red → yellow				EDTA
2.5 years	Triazol	beige → blue-violet				Formaldehyde
2.5 years	Enzymatic	yellow → blue-green				Glucose
2.5 years	Mixed indicator	bright orange → magenta				Glutaraldehyde
2.5 years	Triazine / hole	white → blue				Iron Sensitive 1
2.5 years	Mixed indicator	yellow → blue				LubriCheck
2.5 years	Dithiol	white → green				Molybdenum
 2.5 years	Dimethylglyoxim				-	Nickel
		white → bright-red				
 2.5 years	Nitrate: modified Griess reaction Nitrite: Griess reaction	yellow → red-violet yellow → red-violet	•			Nitrate 100
 2.5 years	Nitrate: modified Griess reaction Nitrite: Griess reaction	Nitrate: white → red-violet Nitrite: white → red-violet	•			Nitrate / Nitrite
 2.5 years	Griess reaction	white → red-violet				Nitrite
 2.5 years	Griess reaction	yellow→red				Nitrite 3000
2.5 years	Nitrite: Griess reaction pH: mixed indicator	Nitrite: white → red-violet pH: yellow-orange → violet-red				Nitrite/pH
2.5 years	Redox reaction	white → blue				Peracetic acid 50

www.mn-net.com 63

Test	REF	Measuring range (visual)	Measuring range (instrumental) 1)	Number of tests
Peracetic acid 2000	91342	0 · 500 · 1000 · 1500 · 2000 mg/L peracetic acid	500–2000 mg/L peracetic acid	100
Peroxide 25	91319	0 · 0.5 · 2 · 5 · 10 · 25 mg/L H ₂ O ₂	0.5–25 mg/L H ₂ O ₂	100
Peroxide 100	91312	$0\cdot 1\cdot 3\cdot 10\cdot 30\cdot 100 \text{ mg/L H}_2\text{O}_2$	1–100 mg/L H ₂ O ₂	100
Peroxide 1000	91333	0 · 50 · 150 · 300 · 500 · 800 · 1000 mg/L H ₂ O ₂	50-1000 mg/L H ₂ O ₂	100
Phosphate	91320	0·3·10·25·50·100 mg/L PO ₄ ³⁻	3-80 mg/L PO ₄ 3-	100
Phosphate 10	91356	0 · 0.5 · 2.0 · 5.0 · 10.0 mg/L PO ₄ ³⁻	-	50
■ Potassium	91316	0 · 200 · 400 · 700 · 1000 · 1500 mg/L K⁺	-	100
QUAT	91337	$0 \cdot 10 \cdot 25 \cdot 50 \cdot 100 \cdot 250 \cdot 500 \cdot 1000$ mg/L benzalkonium chloride	-	100
Silver	91350	0 · 1 · 2 · 3 · 5 · 7 · 10 g/L Ag ⁺	_	100
■ Sulfate	91329	< 200 · > 400 · > 800 · > 1200 · > 1600 mg/L SO ₄ ²⁻	-	100
■ Sulfite	91306	0 · 10 · 25 · 50 · 100 · 250 · 500 · 1000 mg/L SO ₃ ²⁻	10-500 mg/L SO ₃ ²⁻	100
■ Tin	91309	0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L Sn ²⁺	-	100
■ Total acid	91353	0 · 2 · 2.5 · 3.0 · 3.5 · 4.0 · 4.5 · 5.0 g/L citric acid	2-5 g/L citric acid	100
■ Total iron 100	91344	0 · 2 · 5 · 10 · 25 · 50 · 100 mg/L Fe ^{2+/3+}	-	100
■ Total iron 1000	91330	0 · 5 · 20 · 50 · 100 · 250 · 500 · 1000 mg/L Fe ^{2+/3+}	-	100
■ Total sugar	91352	0 · 55 · 100 · 250 · 400 · 600 · 800 mg/L fructose / glucose	55–700 mg/L fructose/ glucose	100
■ Zinc	91310	0 · 2 · 5 · 10 · 25 · 50 · 100 mg/L Zn ²⁺	-	100
■ Nitrate test sets	913918	$0 \cdot 10 \cdot 25 \cdot 50 \cdot 100 \cdot 250 \cdot 500$ mg/L NO $_3$ ⁻ without nitrite chart, but with nitrite test field	-	150 ¹⁾
Multistick for aquarium owners	91326 91327	Total hardness: 0 · 6.3 · 12.5 · 18.8 · 25.0 · 31.3 °e Carbonate hardness: 0 · 3.8 · 7.5 · 12.5 · 18.8 · 25.0 °e pH: 6.4 · 6.8 · 7.2 · 7.6 · 8.0 · 8.4	-	100 25

¹⁾ Measuring range for instrumental evaluation with Quantofix Relax. ²⁾ Sets of 3 individually sealed test strips, pack of 50 sets. GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

			/.	St. Krijitoj krij	. / /
Shelf life	Method	Color change	Olbrig	Pagition Ox	o ki
2.5 years	Redox reaction	bright yellow → red	•		Peracetic acid 2000
2.5 years	Redox reaction	white → blue			Peroxide 25
2.5 years	Redox reaction	white → blue			Peroxide 100
2.5 years	Redox reaction	white → brown			Peroxide 1000
2.5 years	Phosphomolybdenum blue	white → blue-green			Phosphate
2.5 years	Phosphomolybdenum blue	yelllow-green → green-blue			Phosphate 10
2.5 years	Dipikrylamine	yellow → orange			Potassium
2.5 years	Mixed indicator	yellow → blue-green			QUAT
2.5 years	Silver sulfide	yellow → brown			Silver
2.5 years	Ba-thorine-complex	red → yellow			Sulfate
2.5 years	Nitroprussid/Zn-hexacyanoferrate	white → salmon			Sulfite
2.5 years	Phosphomolybdic acid	white → dark blue			Tin
2.5 years	Mixed indicator	pink → yellow			Total acid
2.5 years	Triazine	white → blue-violet			Total iron 100
2.5 years	2,2'-bipyridine	white → dark red			Total iron 1000
2 years (2–8 °C)	Enzymatic	yellow → ocher			Total sugar
2.5 years	Dithizone	orange → red			Zinc
9 months	Nitrate: modified Griess reaction Nitrite: Griess reaction	white → red-violet			Nitrate test sets
2.5 years	Total hardness: EDTA Carbonate hardness: mixed indicator pH: mixed indicator	Total hardness: green → red Carbonate hardness: bright green → blue pH: yellow → red			Multistick for aquarium owners

AQUADUR® and other test strips

Tests for special applications

A range of tests was developed for specific applications and questions. They provide solutions for particular requirements.

AQUADUR® – easy determination of water hardness

AQUADUR® test strips are made for the easy determination of water hardness allowing to optimize the dosing of water softeners.

AQUADUR® Sensitive – highly sensitive determination of water hardness

Feed water for reversed osmosis units needs to have a very low water hardness. AQUADUR® Sensitive is used, for example, in dialysis practices to test the quality of the water after the first softening.

Moisture indicators without cobalt chloride

Commonly used moisture indicators often contain cobalt chloride which has been found to be carcinogenic and toxic. Contact to these types of indicators may present a health and safety risk to staff. The patented non-toxic moisture indicators eliminate these risks and increase safety. They have a very clear color change from red to yellow.

Good to know

< 50 ppm CaCO₃ – very soft water 50–120 ppm CaCO₃ – soft water 120–240 ppm CaCO₃ – medium hard water 240–360 ppm CaCO₃ – hard water Above 360 ppm CaCO₃ – very hard water

Ordering information

•			
Test	REF	Measuring range	Presentation
Ag-Fix for silver in fixing baths	90741	0 · 0 · 5 · 1 · 2 · 3 · 5 · 7 · 10 g/L Ag ⁺ pH 4 · 5 · 6 · 7 · 8	Box of 100 test strips 6 x 95 mm
Ammonia test	90714	0 · 0.5 · 1 · 3 · 6 mg/L NH ₄ +	Box of 25 test strips 7 x 60 mm
■ AQUADUR® 4–14, box	91239	< 54 · > 72 · > 151.2 · > 252 ppm CaCO₃	Box of 100 test strips 6 x 95 mm
AQUADUR® 4–21, box	91220	< 54·> 72·> 126·> 252·> 378 ppm CaCO ₃	Box of 100 test strips 6 x 95 mm
■ AQUADUR® 4–21, bulk	91222	< 54 · > 72 · > 126 · > 252 · > 378 ppm CaCO ₃	Pack of 5000 test strips without scale
■ AQUADUR® 4–21, individually sealed	91224	< 54 · > 72 · > 126 · > 252 · > 378 ppm CaCO ₃	1000 test strips, individually sealed with scale
■ AQUADUR® 4-21, individually sealed	91240	< 54 · > 72 · > 151.2 · > 252 · > 378 ppm CaCO ₃	1000 test strips, individually sealed with scale
AQUADUR® 5–25, box	91201	< 54 · > 90 · > 180 · > 270 · > 360 · > 450 ppm CaCO ₃	Box of 100 test strips 6 x 95 mm
■ AQUADUR® 5–25, bulk	91221	< 54 · > 90 · > 180 · > 270 · > 360 · > 450 ppm CaCO ₃	Pack of 5000 test strips without scale
AQUADUR® 5-25, individually sealed	91223	< 54 · > 90 · > 180 · > 270 · > 360 · > 450 ppm CaCO ₃	1000 test strips, individually sealed with scale
■ AQUADUR® 5–25, test sets	912902	< 54 · > 90 · > 180 · > 270 · > 360 · > 450 ppm CaCO ₃	Sets of 3 individually sealed test strips, pack of 50 sets
■ AQUADUR® Sensitive, box	91243	0 · 5.4 · 10.8 · 18.8 ppm CaCO ₃	Box of 50 test strips 6 x 95 mm
Chlorine test	90709	$10 \cdot 50 \cdot 100 \cdot 200 \text{ mg/L Cl}_2 \text{ (total)}$	Reel of 5 m length and 10 mm width
Cyanuric acid test (swimming pools)	90710	0 · 50 · 100 · 150 · 300 mg/L Cya	Box of 25 test strips 6 x 95 mm
■ Fluoride test	90734	$0 \cdot 2 \cdot 5 \cdot 10 \cdot 20 \cdot 50 \cdot 100 \text{ mg/L F}^{-}$	Box of 30 test discs with reagents
Indiquat (QUATs)	_	According to customer request	Reel of 5 m length and 10 mm width
■ Moisture indicator	90801	20 · 30 · 40 · 50 · 60 · 70 · 80 % rel. humidity	Pack of 12 adhesive labels 50 x 100 mm
■ Moisture indicator	908805	8 % rel. humidity	Pack of 1000 pcs 60 x 35 mm
■ Moisture indicator	908808	8 % rel. humidity	Pack of 1000 pcs 60 x 35 mm
Ozone test (air)	90736	$< 90 \cdot 90 - 150 \cdot 150 - 210 \cdot > 210 \mu g/m3 O3$	Box of 12 test strips 10 x 95 mm
Saltesmo (halide ions)	90608	0 · 0.25 · 0.5 · 1 · 2 · 3 · 4 · 5 g/L NaCl	Box of 30 test discs
Swimming pool test 3 in 1	90752	Free Chlorine: $0 \cdot 0.5 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl ₂ Alkalinity: $0 \cdot 80 \cdot 120 \cdot 180 \cdot 240$ mg/L CaCO ₃ pH: $6.4 \cdot 6.8 \cdot 7.2 \cdot 7.6 \cdot 8.4$	Box of 50 test strips 6 x 95 mm
Swimming pool test 5 in 1	90759	like 90752, in addition: total chlorine: $0 \cdot 1 \cdot 3 \cdot 5 \cdot 10$ mg/L Cl ₂ total hardness: $0 \cdot 100 \cdot 250 \cdot 500 \cdot 1000$ mg/L CaCO ₃	Box of 50 test strips 6 x 95 mm

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS

(6)	
Shelf life	/K [§]
2.5 years	Ag-Fix for silver in fixing baths
2.5 vooro	Ammonia test
2.5 years	
2 years	AQUADUR® 4–14, box
2 years	AQUADUR® 4–21, box
15 months	AQUADUR® 4–21, bulk
1 year	AQUADUR® 4–21, individually sealed
1 year	AQUADUR® 4-21, individually sealed
2 years	AQUADUR® 5–25, box
15 months	AQUADUR® 5–25, bulk
1 year	AQUADUR® 5–25, individually sealed
1 year	AQUADUR® 5-25, test sets
2 years	AQUADUR® Sensitive, box
2 years	Chlorine test
2.5 years	Cyanuric acid test (swimming pools)
2 years	Fluoride test
2 years	Indiquat (QUATs)
2 years	Moisture indicator
1 year	Moisture indicator
1 year	Moisture indicator without cobalt chloride
1.5 years	Ozon test (air)
1.5 years	Saltesmo (halide ions)
2 years	Swimming pool test 3 in 1
2 years	Swimming pool test 5 in 1

Test papers without color chart

Simple test papers for qualitative determinations

These test papers come without a color scale. With little effort, the presence of ions and other substances can be detected. The test papers change color when the concentration is above the specified limit of detection.

Test papers for criminal investigations

Peroxtesmo KM is sensitive to peroxidase and detects blood traces.

Sperm traces can be detected using Phosphatesmo KM which is specific for acidic phosphatase. Both test papers are used in the investigation of crime scenes.

Test papers for milk analysis

The test paper Peroxtesmo MI allows the easy distinction between raw milk and high temperature milk. It is sensitive for the enzyme lactoperoxidase. In contrast to liquid indicators based on guaiacol, Peroxtesmo MI does not smell and comes without hazardous reagents which is convenient and safe for the user.

Phosphatesmo MI detects alkaline phosphatase in milk and is a rapid and easy indicator for the successful pasteurization of milk.

Test papers for oil and oil tanks

Oil test paper is recommended for the rapid determination of oil contaminations in water and soil. On contact with oil the paper turns dark blue.

AQUATEC allows the easy and reliable detection of water at the bottom of petrol and fuel oil tanks. It is also suitable to measure the thickness of water layers in oil separators.

Ordering information

0			
Test	REF	Determination of	Presentation
Aluminum test paper	90721	Aluminum ions (Al ³⁺)	Box of 100 strips 20 x 70 mm
Ammonium test paper	90722	Ammonia, ammonium ions (NH ₃ , NH ₄ ⁺)	Box of 200 strips 20 x 70 mm
Antimony test paper	90723	Antimony ions (Sb ³⁺)	Box of 200 strips 20 x 70 mm
Arsenic test paper	90762	Arsenic, arsine (As, AsH ₃)	Box of 200 strips 20 x 70 mm
Bismuth test paper	90733	Bismuth ions (Bi ³⁺)	Box of 200 strips 20 x 70 mm
Chlortesmo	90603	Chlorine, free halogens	Box of 200 strips 20 x 70 mm
Chromium test paper	90724	Chromium, chromate (Cr(VI) CrO ₄ ²⁻)	Box of 200 strips 20 x 70 mm
Cobalt test paper	90728	Cobalt ions (Co ²⁺)	Box of 100 strips 20 x 70 mm
Copper test paper	90729	Copper(II) ions (Cu ²⁺)	Box of 200 strips 20 x 70 mm
Cuprotesmo	90601	Copper ions (Cu, Cu ⁺ , Cu ²⁺)	Box of 40 sheets 40 x 25 mm
Cyantesmo	90604	Cyanide, hydrocyanic acid (CN⁻, HCN)	Reel of 5 m length and 10 mm width
Dipyridyl paper	90725	Iron(II) ions (Fe ²⁺)	Box of 200 strips 20 x 70 mm
Fluoride test paper	90750	Fluoride, hydrofluoric acid (F ⁻ , HF)	Box of 200 strips 20 x 70 mm
Indanthrene yellow paper	90751	Vat dyes, end-point of conversion	Box of 200 strips 20 x 70 mm
■ Indipro	90765	Protein residues	Box of 60 test strips 10 x 95 mm and additional reagents
■ Iron test paper	90726	Iron ions (Fe ²⁺ , Fe ³⁺)	Box of 100 strips 20 x 70 mm
Lead acetate paper	90744	Hydrogen sulfide, sulfide ions (H ₂ S, S ²⁻)	Reel of 5 m length and 7 mm width
Lead acetate paper	90745	Hydrogen sulfide, sulfide ions (H ₂ S, S ²⁻)	Refill pack with 3 reels
Lead acetate paper	90746	Hydrogen sulfide, sulfide ions (H ₂ S, S ²⁻)	Booklet of 100 strips 10 x 70 mm
■ Mercury bromide paper	90762	Arsenic, arsine (As, AsH ₃)	Box of 200 strips 20 x 70 mm
■ Nickel test paper	90730	Nickel(II) ions (Ni ²⁺)	Box of 200 strips 20 x 70 mm
■ Nitratesmo	90611	Nitrate and nitrite (NO ₃ ⁻ , NO ₂ ⁻)	Reel of 5 m length and 10 mm width
Oil test paper	90760	Oil in water and soil	Box of 100 strips 20 x 70 mm

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS

Detection limit	Shelf life	GHS	Test
10 mg/L Al ³⁺	2 years		Aluminum test paper
10 mg/L NH ₄ +	2 years		Ammonium test paper
5 mg/L Sb ³⁺	2 years		Antimony test paper
0.5 µg arsenic	2 years		Arsenic test paper
60 mg/L Bi ³⁺	2 years		Bismuth test paper
1 mg/L Cl ₂	2 years		Chlortesmo
2 mg/L $\mathrm{Cr^{3+}/5}$ mg/L $\mathrm{CrO_4^{2-}}$	2 years		Chromium test paper
25 mg/L Co ²⁺	2 years		Cobalt test paper
20 mg/L Cu ²⁺	2 years		Copper test paper
0.05 µg Cu on surfaces	1.5 years		Cuprotesmo
0.2 mg/L HCN	2 years		Cyantesmo
2 mg/L Fe ²⁺	2 years		Dipyridyl paper
20 mg/L F ⁻	2 years		Fluoride test paper
Alkaline sodium dithionite traces	2 years		Indanthrene yellow paper
50 μg BSA (bovine serum albumin)	2 years	-	Indipro
10 mg/L Fe ²⁺ or Fe ³⁺	2 years		Iron test paper
5 mg/L S ²⁻	2 years		Lead acetate paper
5 mg/L S ²⁻	2 years		Lead acetate paper
5 mg/L S ²⁻	2 years		Lead acetate paper
0.5 μg arsenic	2 years		Mercury bromide paper
10 mg/L Ni ²⁺	2 years		Nickel test paper
10 mg/L $\mathrm{NO_3}^-/\mathrm{5}$ mg/L $\mathrm{NO_2}^-$	2 years		Nitratesmo
250 mg/L petroleum ether / 10 mg/L gasoline (high octane) / 5 mg/L fuel oil / 1 mg/L lubricating oil	3 years		Oil test paper

Test papers without color chart

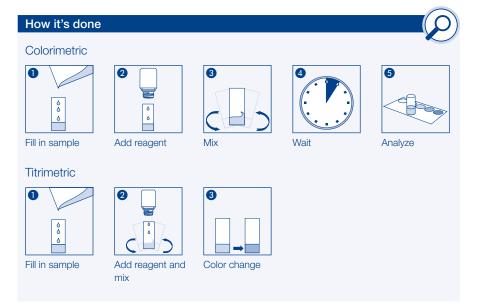
Toot	REF	Determination of	Presentation
Test		Determination of	
Peroxtesmo KM	90605	Blood traces (peroxidase)	Box of 25 test papers 15 x 30 mm
Peroxtesmo KO	90606	Peroxidase in food	Box of 100 test papers 15 x 15 mm
Peroxtesmo MI	90627	Peroxidase in milk	Box of 100 test papers 15 x 15 mm
Phosphatesmo KM	90607	Sperm, acid phosphatase	Box of 25 test papers 15 x 30 mm
Phosphatesmo MI	90612	Alkaline phosphatase in milk	Box of 50 test strips 10 x 95 mm
■ Plumbtesmo	90602	Lead, lead ions (Pb, Pb ²⁺)	Box of 40 sheets 40 x 25 mm
Potassium iodate starch paper	90753	Nitrous acid, sulfur dioxide	Reel of 5 m length and 7 mm width
Potassium iodide starch paper	90754	Nitrite ions, nitrous acid, ozone, chlorine (NO ₂ -, HNO ₂ , O ₃ , Cl ₂)	Reel of 5 m length and 7 mm width
Potassium iodide starch paper	90755	Nitrite ions, nitrous acid, ozone, chlorine (NO ₂ -, HNO ₂ , O ₃ , Cl ₂)	Refill pack with 3 reels
Potassium iodide starch paper	90756	Nitrite ions, nitrous acid, ozone, chlorine (NO2-, HNO2, O3, Cl2)	Booklet of 100 strips 10 x 70 mm
Potassium iodide starch paper	90758	Nitrite ions, nitrous acid, ozone, chlorine (NO ₂ -, HNO ₂ , O ₃ , Cl ₂)	Box of 200 strips 20 x 70 mm
Potassium test paper	90727	Potassium ions (K+)	Box of 200 strips 20 x 70 mm
Silver test paper	90732	Silver ions (Ag+)	Box of 200 strips 20 x 70 mm
Sulfide test paper	90761	Hydrogen sulfide, sulfide ions (H ₂ S, S ²⁻)	Reel of 5 m length and 7 mm width
Sulfite test paper	90763	Hydrogen sulfide, sulfite ions (SO ₂ , SO ₃ ²⁻)	Box of 100 strips 20 x 70 mm
■ Tumeric paper	90747	Boric acid, borates (H ₃ BO ₃ , BO ₃ ³⁻)	Box of 200 strips 20 x 70 mm
Udder test paper	90748	Mastitis	20 sheets 90 x 140 mm in PE bag
■ Waterfinder test paper	90630	Water in organic solutions	Reel of 7 m length and 14 mm width
■ Watesmo	90609	Water in organic solutions	Reel of 5 m length and 10 mm width
Wator	90610	Water distribution in butter	Box of 50 sheets 78 x 40 mm
Zirconium test paper	90721	Zirconium ions (Zr ⁴⁺)	Box of 100 strips 20 x 70 mm
GHS: Globally harmonized system: This produ	uct contains ha	armful substances which must be specially labeled as hazardous. For detailed informati	on please see the SDS.

Test papers without color chart

ı	Detection limit	Shelf life	GHS	Test
[Blood traces	1.5 years		Peroxtesmo KM
F	Peroxidase traces	2.5 years		Peroxtesmo KO
3	3 % raw milk in UHT milk	1 year		Peroxtesmo MI
(Sperm traces	1.5 years		Phosphatesmo KM
	0.5 % raw milk in pasteurized milk/300 U/L alkaline phosphatase in UHT milk	1 year (2-8 °C)		Phosphatesmo MI
Ę	5 mg/L Pb ²⁺	15 months		Plumbtesmo
Ę	5 mg/L SO ₂	2 years		Potassium iodate starch paper
-	1 mg/L NO ₂ ⁻ /1 mg/L Cl ₂	2 years		Potassium iodide starch paper
-	1 mg/L NO ₂ ⁻ /1 mg/L Cl ₂	2 years		Potassium iodide starch paper
	1 mg/L NO ₂ -/1 mg/L Cl ₂	2 years		Potassium iodide starch paper
-	1 mg/L NO ₂ ⁻ /1 mg/L Cl ₂	2 years		Potassium iodide starch paper
2	250 mg/L K ⁺	2 years		Potassium test paper
4	20 mg/L Ag ⁺	2 years		Silver test paper
Ę	5 mg/L S ²⁻	2 years		Sulfide test paper
-	10 mg/L Na ₂ SO ₃	2 years		Sulfite test paper
2	20 mg/L B / 100 mg/L H ₃ BO ₃	2 years		Tumeric paper
١	Mastitis traces	2 years		Udder test paper
7	Traces of water	2 years		Waterfinder test paper
-	Traces of water	2 years		Watesmo
-	Traces of water	2 years		Wator
	20 mg/L Zr ⁴⁺	2 years		Zirconium test paper

Visual test kits

VISOCOLOR® VISOCOLOR® alpha......74 VISOCOLOR® Powder Pillows82


pH 4.0 - 9.0 6.5 7.0 7.5 10 mL MN LEX LOT: EXP: LOT: EXP:

VISOCOLOR® alpha

Colorimetric and titrimetric test kits

VISOCOLOR® alpha is the most simple version of colorimetric and titrimetric test kits. These tests are suitable for visual evaluation only and are very convenient in performance, because of the used multicomponent reagents. Therefore, the test kits are limited in precision and accuracy but represent an inexpensive method for screening tests of non-turbid and uncolored water samples. The reagent bottles are packed in practical blister packs. The color comparison chart for colorimetric evaluations, as well as the test instructions, are provided on the cardboard back, which is also used for opening and closing of the package.

Ordering information

Test	REF	Measuring range	Number of tests	Shelf life	Method
■ Ammonium	935012	$0 \cdot 0.2 \cdot 0.5 \cdot 1 \cdot 2 \cdot 3 \text{ mg/L NH}_4^+$	50	1.5 years	Indophenol
■ Carbonate hardness	935016	1 drop equals 1.25 °e	100	1.5 years	Mixed indicator
■ Chlorine, free	935019	0.25 · 0.5 · 1.0 · 1.5 · 2.0 mg/L Cl ₂	150	1.5 years	DPD
■ Nitrate	935065	$2 \cdot 8 \cdot 15 \cdot 30 \cdot 50 \text{ mg/L NO}_3^-$	100	1.5 years	Azo dye
■ Nitrite	935066	0.05 · 0.10 · 0.25 · 0.5 · 1.0 mg/L NO ₂ -	200	1.5 years	Sulfanilic acid / 1-naphthylamine
■ pH 5–9	935075	pH 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	200	3 years	Mixed indicator
■ Phosphate	935079	2 · 5 · 10 · 15 · 20 mg/L PO ₄ ³⁻	70	2 years	Phosphomolybdenum blue
■ Residual hardness	935080	0.00 · 0.05 · 0.10 · 0.19 · 0.38 °e	200	1 year	Mixed indicator
■ Total hardness	935042	1 drop equals 1.25 °e	100	1.5 years	Complexometric titration

¹⁾ Please see the instruction leaflet.

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

VISOCOLOR® ECO

Colorimetric and titrimetric test kits

VISOCOLOR® ECO presents a product group of colorimetric and titrimetric test kits, which allow even the determination of low limiting values with sufficient accuracy. The high sensitivity and accuracy is accomplished by single reagents which can be dosed precisely and by the possibility to compensate turbidity and color of water samples.

The results are evaluated visually with high-quality color comparison cards, which are adjusted to the original colors of standard solutions. In addition, there is the possibility to evaluate most VISOCOLOR® ECO tests also photometrically with the compact photometers PF-3 (see page 134) and PF-12 Plus (see page 132) and spectrophotometer NANOCOLOR® Advance (see page 128). This enables a quantitative evaluation of the test kit.

Budget-priced refill packs are available for photometric evaluation as well as for replacement of consumed chemicals.

All VISOCOLOR® ECO test kits are delivered in a practical cardboard box with plastic inlay and easy to understand instruction manual. In addition, pictogram instructions are available for every test kit on the MACHEREY-NAGEL website.

How it's done Colorimetric Add reagent Fill in sample Mix Wait **Titrimetric** 0 Add indicator Add titration Color change Fill in sample solution and mix

Good to know

The easiest way to check your photometric chlorine measurement: VISOCOLOR® Color standards Chlorine (REF 914820)

Ordering information

Test	REF	REF refill	Measuring range (visual)	Measuring range (photometric) ⁴⁾	Number of tests
■ Alkalinity TA	-	931204	-	0.4 – $17.5~e/5$ – $250~mg/L~CaCO_3$	100
■ Aluminum	931006	931206	0 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 · 0.40 · 0.50 mg/L Al ³⁺	-	50
Ammonium 3	931008	931208	0 · 0.2 · 0.3 · 0.5 · 0.7 · 1 · 2 · 3 mg/L NH ₄ +	0.1–2.5 mg/L NH ₄ +	50
Ammonium 15	931010	931210	$0 \cdot 0.5 \cdot 1 \cdot 2 \cdot 3 \cdot 5 \cdot 7 \cdot 10 \cdot 15 \text{ mg/L NH}_4^+$	0.5-8.0 mg/L NH ₄ +	50
■ Bromine	-	931211	-	0.10-13.00 mg/L Br ₂	200
■ Calcium	931012	_	1 drop equals 5 mg/L Ca ²⁺	=	100
Carbonate hardness	931014	_	1 drop equals 1.25 °e	-	100
■ Chloride	931018	931218	1 · 2 · 4 · 7 · 12 · 20 · 40 · 60 mg/L CΓ	1–50 mg/L Cl⁻	90

■ Chlorine + pH see Swimming pool

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS. refill: Refill pack, sufficient for photometric determination.

²⁾ For evaluation with the PF-12/PF-12^{Plus}, a special filter (450 nm) is required.

³⁾ Additionally required with first order: Oxygen sample bottle, REF 915498.

⁴⁾ Measuring range for photometric evaluation with the PF-12^{Plus}. Range on other photometers can be different.

Easy

- Chemical analysis without further accessories
- No extensive training necessary
- Color-coded reagents with clear dosing instructions

Safe

- Pictogram test instructions
- Reaction basis according to international standards
- Compensation of turbidity and color

Unique

VISOCOLOR®

- High quality test kits
- Business-prized refill packs

		/		 Orinary St. S.	\$ 8		ziic	;.C	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
Shelf life	Method	PGNog	8 /	Dinker S	100 X	zoill color	Titing Citing	Sa	ngton CYC	
1 year	Bromophenol blue									Alkalinity TA
2 years	Chromazurol S									Aluminum
1.5 years	Indophenol									Ammonium 3
1.5 years	Indophenol									Ammonium 15
2 years	DPD									Bromine
1.5 years	Complexometric titration									Calcium
2 years	Mixed indicator									Carbonate hardness
1 year	Mercury(II)-thiocyanate / Iron(III)-nitrate	-				-			-	Chloride
										Chlorine + pH see Swimming pool

www.mn-net.com MN 77

VISOCOLOR® ECO

Test	REF	REF refill	Measuring range (visual)	Measuring range (photometric) ⁴⁾	Number of tests
■ Chlorine 1, free + total	931035	931235	< 0.1 · 0.1 · 0.2 · 0.3 · 0.4 · 0.6 · 0.9 · 1.2 · 2.0 mg/L Cl ₂	0.05–2.00 mg/L Cl ₂	150
free Chlorine 2	931016	931216	< 0.1 · 0.1 · 0.2 · 0.3 · 0.4 · 0.6 · 0.9 · 1.2 · 2.0 mg/L Cl ₂	0.05–2.00 mg/L Cl ₂	150
Chlorine 2, free + total	931015	931215	< 0.1 · 0.1 · 0.2 · 0.3 · 0.4 · 0.6 · 0.9 · 1.2 · 2.0 mg/L Cl ₂	0.05–2.00 mg/L Cl ₂	150
■ free Chlorine 6	-	931219	-	0.05–6.00 mg/L Cl ₂	400
Chlorine 6, free + total	-	931217	-	0.05–6.00 mg/L Cl ₂	200
■ Chlorine dioxide	931021	931221	< 0.2 · 0.2 · 0.4 · 0.6 · 0.8 · 1.1 · 1.7 · 2.3 · 3.8 mg/L ClO ₂	0.20-3.80 mg/L CIO ₂	150
■ Chromium(VI)	931020	931220	0.02 · 0.05 · 0.10 · 0.15 · 0.20 · 0.30 · 0.40 · 0.50 mg/L Cr(VI)	0.02-0.50 mg/L Cr(VI)	140
■ Copper	931037	931237	0 · 0.1 · 0.2 · 0.3 · 0.5 · 0.7 · 1.0 · 1.5 mg/L Cu ²⁺	0.1-5.0 mg/L Cu ²⁺	100
■ Cyanide	931022	931222	0 · 0.01 · 0.02 · 0.03 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 mg/L CN⁻	0.01-0.20 mg/L CN ⁻	100
Cyanuric acid	931023	931223	10 · 15 · 20 · 30 · 40 · 60 · 80 · 100 mg/L Cya	10-100 mg/L Cya	100
■ DEHA	931024	931224	0 · 0.01 · 0.03 · 0.05 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 mg/L DEHA	-	125
■ Detergents, anionic	931050	931250	0.1 · 0.25 · 0.5 · 1.0 · 2.0 · 5.0 mg/L MBAS	-	50
■ Detergents, cationic	931051	931251	0 · 1 · 3 · 5 · 10 · 15 · 20 mg/L CTAB	-	50
■ Fluoride	-	931227	-	0.1–2.0 mg/L F ⁻	150
■ Hydrazine	931030	931230	0 · 0.05 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 · 0.40 mg/L N ₂ H ₄	0.05-0.40 mg/L N ₂ H ₄	130
■ Iron 1	931025	931225	0 · 0.04 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 · 0.50 · 1.0 mg/L Fe	0.04–2.00 mg/L Fe	200
■ Iron 2	931026	931226	0 · 0.04 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 · 0.50 · 1.0 mg/L Fe	0.04-2.00 mg/L Fe	100
■ Manganese	931038	931238	0 · 0.1 · 0.2 · 0.3 · 0.5 · 0.7 · 0.9 · 1.2 · 1.5 mg/L Mn	0.1–5.0 mg/L Mn	70
■ Nickel	931040	931240	0 · 0.1 · 0.2 · 0.3 · 0.5 · 0.7 · 0.9 · 1.2 · 1.5 mg/L Ni ²⁺	0.04-5.00 mg/L Ni ²⁺	150
■ Nitrate	931041	931241	$0 \cdot 1 \cdot 3 \cdot 5 \cdot 10 \cdot 20 \cdot 30 \cdot 50 \cdot 70 \cdot 90 \cdot 120 \text{ mg/L NO}_3^-$	4–60 mg/L NO ₃ ⁻	110
■ Nitrite	931044	931244	$0 \cdot 0.02 \cdot 0.03 \cdot 0.05 \cdot 0.07 \cdot 0.1 \cdot 0.2 \cdot 0.3 \cdot 0.5 \cdot \text{mg/L NO}_2^-$	0.02-0.50 mg/L NO ₂ -	120
Oxygen ³⁾	931088	931288	0 · 1 · 2 · 3 · 4 · 6 · 8 · 10 mg/L O ₂	1–8 mg/L O ₂	50
■ pH 4.0–9.0	931066	931266	pH: 4.0 · 5.0 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	-	450
■ pH 6.0–8.2	-	931270	-	pH 6.1–8.4	150
■ Phosphate	931084	931284	0 · 0.2 · 0.3 · 0.5 · 0.7 · 1 · 2 · 3 · 5 mg/L PO ₄ -P	0.2-5.0 mg/L PO ₄ -P	80
Potassium	931032	931232	2·3·4·6·8·10·15 mg/L K ⁺	2–25 mg/L K ⁺	60
■ Silica	931033	931233	0 · 0.2 · 0.4 · 0.6 · 1.0 · 1.5 · 2.0 · 2.5 · 3.0 mg/L SiO ₂	0.2-3.0 mg/L SiO ₂	80
Silica HR 200	_	931234	-	10-200 mg/L SiO ₂ ²⁾	100
■ Sulfate	931092	931292	25 · 30 · 35 · 40 · 50 · 60 · 70 · 80 · 100 · 120 · 150 · 200 mg/L SO ₄ ²⁻	20-200 mg/L SO ₄ ²⁻	100
■ Sulfide	931094	931294	0.1 · 0.2 · 0.3 · 0.4 · 0.5 · 0.6 · 0.7 · 0.8 mg/L S ²⁻	0.05-0.80 mg/L S ²⁻	90
■ Sulfite	931095	-	1 drop equals 1 mg/L SO ₃ ²⁻	-	60
■ Swimming pool	931090	931290	$\begin{aligned} & \text{Chlorine:} < 0.1 \cdot 0.1 \cdot 0.2 \cdot 0.3 \cdot 0.4 \cdot 0.6 \cdot 0.9 \cdot 1.2 \cdot 2.0 \text{ mg/L Cl}_2 \\ & \text{pH: } 6.9 \cdot 7.2 \cdot 7.4 \cdot 7.6 \cdot 7.8 \cdot 8.2 \end{aligned}$	-	150
■ Total hardness	931029	_	1 drop equals 1.25 °e	-	110
■ Zinc	931098	931298	0 · 0 · 5 · 1 · 2 · 3 mg/L Zn ²⁺	0.1–3.0 mg/L Zn ²⁺	120

 ^{1&}lt;sup>1</sup>Please see the instruction leaflet.
 2¹For evaluation with the PF-12/PF-12^{Plus}, a special filter (450 nm) is required.
 3¹Additionally required with first order: Oxygen sample bottle, REF 915498.
 4¹Measuring range for photometric evaluation with the PF-12^{Plus}. Range on other photometers can be different.
 GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS. refill: Refill pack, sufficient for photometric determination.

VISOCOLOR® ECO

					Diriking of St.	<i>*</i>			, _i C		\a_	
Shelf life	Method	Pariot	\$ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	2K.25	Okty St. S		500) VK.20	odi Colori	Thin	Stic Son	Stor St.	
2 years	DPD											Chlorine 1, free + total
1.5 years	DPD											free Chlorine 2
1.5 years	DPD											Chlorine 2, free + total
2 years	DPD											free Chlorine 6
2 years	DPD											Chlorine 6, free + total
1.5 years	DPD											Chlorine dioxide
1.5 years	Carbazide											Chromium(VI)
2 years	Cuprizone											Copper
1 year	Barbituric acid/pyridine											Cyanide
1.5 years	Triazine (turbidity)											Cyanuric acid
1 year	Redox reaction	•						•		-		DEHA
2 years	Methylene blue											Detergents, anionic
2 years	Bromphenol blue											Detergents, cationic
1.5 years	SPADNS											Fluoride
1 year	4-Dimethylaminobenzaldehyde											Hydrazine
2 years	Triazine											Iron 1
2 years	Triazine											Iron 2
1.5 years	Formaldoxime											Manganese
1.5 years	Dimethylglyoxime											Nickel
1.5 years	Azo dye											Nitrate
1.5 years	Sulfanilic acid / 1-naphthylamine											Nitrite
1 year	Winkler											Oxygen 3)
3 years	Mixed inidicator											pH 4.0–9.0
1.5 years	Mixed indicator											pH 6.0-8.2
3 years	Phosphormolybdenum blue											Phosphate
3 years	Potassium tetraphenyl borate (turbidity)	-	•		•		•	-		•	-	Potassium
3 years	Silicomolybdenum blue											Silica
3 years	Silicomolybdenum blue											Silica HR 200
3 years	Barium sulfate (turbidity)	-						-		-	•	Sulfate
3 years	DPD							-		-		Sulfide
1 year	lodometric titration											Sulfite
1.5 years	DPD Mixed indicator							-		•	•	Swimming pool
1.5 years	Complexometric titration									-		Total hardness
1 year	Zincon											Zinc

VISOCOLOR®

VISOCOLOR® HE

Colorimetric and titrimetric test kits

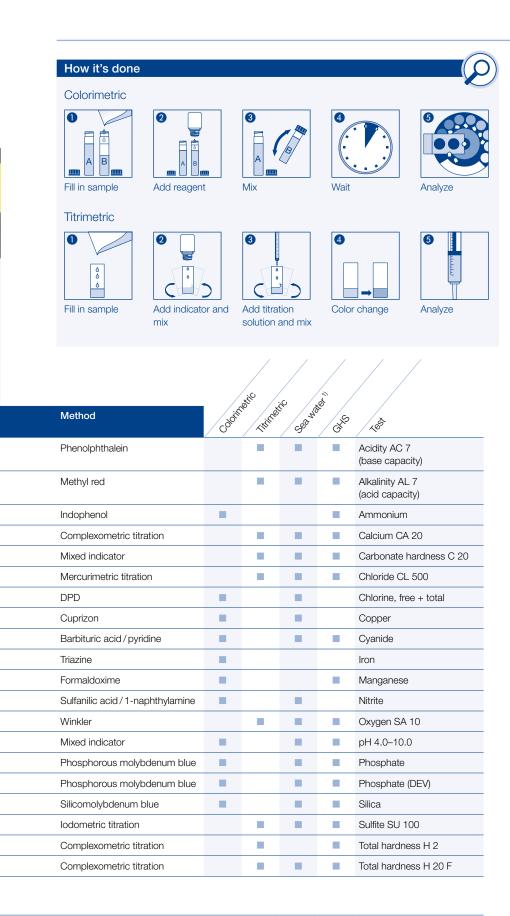
VISOCOLOR® HE test kits are highly sensitive colorimetric and titrimetric tests to determine even the lowest limiting values.

The exact dosing of the single reagents as well as the compensation of turbidity and color are the basis for a highly precise analysis. Maximum sensitivity and accuracy are achieved by the use of longer measuring tubes and larger sample volumes. The sensitivity of VISOCOLOR® HE is 10 to 100 times higher compared to other VISOCOLOR®

The visual evaluation of the colorimetric test kits is done with high-quality color comparison disks, which are adjusted to the original color of standard solutions.

Refill packs are available as replacement for consumed reagents. Every VISOCOLOR® HE test kit is delivered in a robust box with plastic inlay and an easy to understand instruction leaflet.

Good to know


VISOCOLOR® HE test kits reach the highest sensitivity and accuracy in visual analytics.

Ordering information

Test	REF	REF refill	Measuring range	Number of tests	Shelf life
Acidity AC 7 (base capacity)	915006	915206	0.2–7.2 mmol/L H ⁺ (1 syringe filling)	200	2 years
Alkalinity AL 7 (acid capacity)	915007	915207	0.2–7.2 mmol/L OH ⁻ (1 syringe filling)	200	2 years
■ Ammonium	920006	920106	$0.0 \cdot 0.02 \cdot 0.04 \cdot 0.07 \cdot 0.10 \cdot 0.15 \cdot 0.20 \cdot 0.30 \cdot 0.40 \cdot 0.50 \; \text{mg/L NH}_{\text{\tiny 4}}^{\text{\tiny +}}$	110	1 year
Calcium CA 20	915010	915210	0.6-25.0 °e / 0.1-3.6 mmol/L Ca ²⁺ (1 syringe filling)	200	2 years
Carbonate hardness C 20	915003	915203	0.6-25.0 °e / 0.2-7.2 mmol/L H+ (1 syringe filling)	200	2 years
■ Chloride CL 500	915004	915204	5–500 mg/L Cl ⁻ (1 syringe filling)	300	2 years
■ Chlorine, free + total	920015	920115	$0.0 \cdot 0.02 \cdot 0.04 \cdot 0.06 \cdot 0.10 \cdot 0.15 \cdot 0.20 \cdot 0.30 \cdot 0.40 \cdot 0.60 \; \text{mg/L Cl}_2$	160	2 years
■ Copper	920050	920150	0.0 · 0.04 · 0.07 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 · 0.40 · 0.50 mg/L Cu ²⁺	150	2 years
■ Cyanide	920028	920128	0.0 · 0.002 · 0.004 · 0.007 · 0.010 · 0.015 · 0.020 · 0.025 · 0.030 · 0.040 mg/L CN-	50	1 year
■ Iron	920040	920140	0.0 · 0.01 · 0.02 · 0.03 · 0.04 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 mg/L Fe	300	2 years
■ Manganese	920055	920155	0.0 · 0.03 · 0.06 · 0.10 · 0.15 · 0.20 · 0.25 · 0.30 · 0.40 · 0.50 mg/L Mn	100	1.5 years
■ Nitrite	920063	920163	$0.0 \cdot 0.005 \cdot 0.010 \cdot 0.015 \cdot 0.02 \cdot 0.03 \cdot 0.04 \cdot 0.06 \cdot 0.08 \cdot 0.10 \; \mathrm{mg/L} \; \mathrm{NO_2}^-$	150	2 years
Oxygen SA 10	915009	915209	0.2–10.0 mg/L O_2 (1 syringe filling)	100	1.5 years
■ pH 4.0–10.0	920074	920174	pH 4.0 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0 · 10.0	500	2 years
■ Phosphate	920082	920182	0.0 · 0.05 · 0.10 · 0.15 · 0.20 · 0.3 · 0.4 · 0.6 · 0.8 · 1.0 mg/L PO ₄ -P	300	2 years
■ Phosphate (DEV)	920080	920180	0.0 · 0.01 · 0.02 · 0.03 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 · 0.25 mg/L PO ₄ -P	100	2 years
■ Silica	920087	920187	0.0 · 0.01 · 0.02 · 0.03 · 0.05 · 0.07 · 0.10 · 0.15 · 0.20 · 0.30 mg/L Si	120	2 years
■ Sulfite SU 100	915008	915208	2-100 mg/L SO ₃ ²⁻ (1 syringe filling)	100	3 years
■ Total hardness H 2	915002	915202	0.06-2.50 °e/0.01-0.36 mmol/L Ca ²⁺ (1 syringe filling)	200	1.5 years
■ Total hardness H 20 F	915005	915205	0.6-25.0 °e / 0.1-3.6 mmol/L Ca ²⁺ (1 syringe filling)	200	1.5 years

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS. refill.: Refill pack

VISOCOLOR® Powder Pillows

Photometric reagent Powder Pillows

VISOCOLOR® Powder Pillows are photometric tests that combine easiest dosing of reagents with photometric precision. Each VISOCOLOR® powder pillow contains the exact amount of reagents needed for a determination. The individually packaged portions not only stand out due to their very long shelf life, but also avoid the use of hazardous substances wherever possible. Easy to understand test instructions with pictograms in 6 languages are available on MACHEREY-NAGEL homepage. VISOCOLOR® Powder Pillows can be evaluated on compact photometers PF-12Plus (see page 132), PF-3 (see page 134) and spectrophotometers NANOCOLOR® Advance (see page 128) NANOCOLOR® VIS II and NANOCOLOR® UV/vis II (see page 124).

How it's done Application VISOCOLOR® Powder Pillows Add Powder Mix Fill in sample Pillow

Good to know

Most VISOCOLOR® Powder Pillows for chlorine and silica can be directly used in competitor's photometers. They are ready to use with pre-programmed methods and equipment, no further calibration is needed.

Ordering information

Test	REF	Number of tests	Measuring range	Shelf life	Method
■ Ammonium	936229	100	0.02-0.80 mg/L NH ₄ -N	3 years	Bethelot reaction
■ free Chlorine	936220 936220.1	100 1000	0.03–6.00 mg/L $\rm Cl_2$	5 years	DPD
■ total Chlorine, Ozone	936221 936221.1	100 1000	0.03–6.00 mg/L $\rm Cl_2/0.03$ –4.00 mg/L $\rm O_3$	5 years	DPD
■ Iron	936227	100	0.03 – 3.00 mg/L Fe	3 years	1,10-Phenanthroline
■ Nitrate	936226	100	1.0–50 mg/L NO₃-N	3 years	Azo dye
■ Nitrite	936230	100	0.01-0.30 mg/L NO ₂ -N	3 years	Diazotation
■ pH	936222	100	pH: 6.2–8.2	5 years	Mixed indicator
■ Phosphate	936228	100	0,02-4,50 mg/L PO ₄ -	3 years	Phosphormolybdenum blue
■ Silica LR ¹⁾	936224	100	0.02-2.10 mg/L SiO ₂	3 years	Silicomolybdenum blue
■ Silica HR ²⁾	936225	100	2-210 mg/L SiO ₂	3 years	Molybdosilic acid
■ Sulfate	936223	100	15-200 mg/L SO ₄ ²⁻	5 years	Barium sulfate (turbidity)

¹⁾ Measuring range for photometric evaluation on NANOCOLOR® VIS II. Range on other photometers can be different.

 $^{^{2)}}$ For evaluation with the PF-12 $^{\rm Plus}$, a special filter (450 nm) is required.

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

Easy

- Dosing without spoon or pipette
- Pictogram instructions for each test
- No zero measurement required

Safe

- Photometric precision for best results
- Reaction basis according to international standards
- Extremely long shelf life

Unique

- Optimal price / performance-ratio
- Works on competitor's photometers
- Ecologically friendly disposal of used reagents

	April 18 18 18 18 18 18 18 18 18 18 18 18 18	,	Note of the state	£ /0	200		ito iiolo (
Social	24,5°	/ K	inkins St. St.	\$ ALIGH		con c	Sillot ible M	, Chi	Į. Št.
									Ammonium
	•		•			•			free Chlorine
			•			•	•		total Chlorine, Ozone
									Iron
									Nitrate
									Nitrite
									рН
									Phosphate
									Silica LR
									Silica HR
									Sulfate

VISOCOLOR® accessories

The complete analysis from one source

VISOCOLOR® test kits from MACHEREY-NAGEL are ideally suited for the fast and easy water analysis. Besides the test kits, MACHEREY-NAGEL offers a broad range of accessories for VISOCOLOR® tests.

Good to know

VISOCOLOR® Color standards Chlorine (REF 914820) simulate the reaction color of DPD-based VISOCOLOR® chlorine tests for simple photometer check.

Ordering information

Description	REF	Content	GHS
Inspection solutions			
■ VISOCOLOR® Color standards Chlorine for checking consistent instrument response of NANOCOLOR® UV/vis II, VIS II, NANOCOLOR® Advance, PF-12 ^{Plus} and PF-3	914820	4 solutions	
Accessories			
■ Measuring glasses for VISOCOLOR® ECO with screw caps	931151	10 pieces	
■ Slide comparator for VISOCOLOR® ECO	931152	2 pieces	
■ Color comparison chart for VISOCOLOR® ECO (REF end No. see test kit)	931 4	1 piece	
■ Titration test tube with 5-mL-marking	915499	1 piece	
■ Sample bottle 30 mL for oxygen determination	915498	1 piece	
■ Sample beaker 25 mL	914498	1 piece	
■ Sample tube with 10-/20-mL-marking	914496	1 piece	
■ Measuring tube 25–200 mg/L Sulfate	914495	1 piece	
■ Measuring tube 2–15 mg/L Potassium	914444	1 piece	
■ Test tubes 16 mm OD	91680	20 pieces	
■ Test tubes 24 mm OD	936101	6 pieces	
■ Plastic spoon (measuring spoon) black, 85 mm	914663	10 pieces	
■ Plastic spoon (measuring spoon) orange, 85 mm	914664	10 pieces	
■ Plastic spoon (measuring spoon) black, 70 mm	914492	10 pieces	
■ VISOCOLOR® ECO test instructions for photometer PF-12 ^{Plus}	931503	1 piece	
■ VISOCOLOR® ECO test instructions for photometer PF-12	931501	1 piece	
■ VISOCOLOR® ECO test instructions for photometer PF-3	934001	1 piece	
■ VISOCOLOR® ECO test instructions for visual determination	931502	1 piece	
■ Additive reagent Z-1 to eliminate copper ions prior determination of total hardness	931929	30 mL	
■ Measuring tube for VISOCOLOR® HE with screw cap	920401	10 pieces	
■ Comparator block for VISOCOLOR® HE	920402	1 piece	
■ Color comparison disk for VISOCOLOR® HE (REF end No. see test kit)	9203	1 piece	
■ Spare syringes for VISOCOLOR® HE (REF end No. see test kit)	9154	2 pieces	
■ Thermometer -10 °C to +60 °C	914497	1 piece	

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

VISOCOLOR® Color standards Chlorine

Simplest photometer control

- For VISOCOLOR® chlorine analysis
- Simulates DPD reaction color
- Three concentrations in a rugged case
- For VISOCOLOR® ECO tests and VISOCOLOR® Powder Pillows

Photometric tests

NANOCOLOR®

NANOCOLOR® tube tests	88
NANOCOLOR® robot tests	96
NANOCOLOR® standard tests	98
NANOCOLOR® ECO	102
NANOCONTROL	104
NANOCOLOR® reagents for sample decomposition	110
NANOCOLOR® accessories.	112

Precise rapid tests for photometric water analysis

NANOCOLOR® tube tests for photometric analysis convince by their easy handling and therefore are the first choice for routine, laboratory and process analysis. A maximum in accuracy and precision is granted for the measurement results due to exactly pre-dosed reagents in 16 mm cuvettes and additional reagents. The tests are preprogrammed in MACHEREY-NAGEL photometers and selected automatically via a barcode on the cuvette. This perfect interaction of instruments and tests lets the user experience a high measurement safety, saving time and working cost-efficiently.

Ideally packed

All $NANOCOLOR^{\$}$ tube tests are delivered in stable boxes with color coded labels, giving all relevant information about the test at one glance. The boxes provide a perfect protection from sunlight and convenient withdrawal of test tubes and reagents. LOT-specific information are available by scanning of the 2D barcode on the back of the box. The colored pictograms in the lid, which are of special value for our customers, provide intuitive instructions on the test procedure also for inexperienced users.

The perfect test for every user

The user's choice of the correct test is the first step towards a successful analysis. MACHEREY-NAGEL offers various test kits with different measurement ranges for all typical parameters relevant in water and waste water analysis. It is recommended to choose a test kit, where the expected and measured measurement value is within the 20-80% range of the measuring range of the used test. Here, the safety of the measurement result is at its optimum. The operator gets reliable results and safety for the reporting of his results to supervisors and towards authorities.

Good to know

Via the 2D barcode on the back of the packages, LOT-specific information can be read easily.

Easy

- Colored pictograms as step-by-step instruction
- Big cuvettes for easy pipetting
- Barcoded cuvettes for automatic test selection

- Convenient withdrawal of tubes from the box
- No contact with chemicals
- Reactions based on internationally accepted standard methods

Reliable

- Precisely pre-dosed reagents
- Adequate test for every application
- Constant high quality from batch to batch

ISO conform COD tests

MACHEREY-NAGEL offers a complete analytical system with seven tube tests for an ISO conform COD analysis. The ISO 15705 describes the use of tube tests that are suitable for photometric evaluation and is a standardized and internationally accepted method for sewage and waste water analysis. This norm explicitly suggests to use commercial test kits.

Time-saving and reliable analysis of total nitrogen

The sum-parameter total nitrogen is of high relevance in water and waste water analysis. It gives valuable information about the grade of contaminations with e.g. ammonia, nitrite or nitrate. NANOCOLOR® total nitrogen tests impress with safe and reproducible results as well as fast and easy handling. Precisely pre-dosed reagents allow the performance of the test in only a few steps. A separate cuvette for every sample decomposition saves time is and minimizes errors from cross-contaminations.

Good to know

For further information on photometers for the evaluation of NANOCOLOR® tube tests see page 12.

Ordering information

Test Aluminum 07 ²⁾		REF	Measuring range NANOC	COLOR® VIS II	Number of tests	Shelf life	Method
		985098	0.02-0.70 mg/L Al ³⁺		19	1 year	Eriochrome® Cyanine R
Ammonium 3		985003	0.04-2.30 mg/L NH ₄ -N	0.05-3.00 mg/L NH ₄ +	20	1 year	Indophenol
Ammonium 10		985004	0.2-8.0 mg/L NH ₄ -N	0.2-10.0 mg/L NH ₄ +	20	1 year	Indophenol
Ammonium 50		985005	1–40 mg/L NH ₄ -N	1-50 mg/L NH ₄ +	20	1 year	Indophenol
Ammonium 100		985008	4–80 mg/L NH ₄ -N	5–100 mg/L NH ₄ ⁺	20	1 year	Indophenol
Ammonium 200		985006	30-160 mg/L NH ₄ -N	40-200 mg/L NH ₄ +	20	1 year	Indophenol
Ammonium 2000		985002	300-1600 mg/L NH ₄ -N	400–2000 mg/L NH ₄ +	20	1 year	Indophenol
AOX 3		985007	0.1-3.0 mg/L AOX	0.01-0.30 mg/L AOX	20	1 year	Mercury(II)-thiocyanate / Iron(III)-nitrate
BOD ₅ (in Winkler b	pottles)	985822	2–3000 mg/L O ₂		25–50	2 years	Winkler
■ BOD ₅ -TT		985825	0.5–3000 mg/L O ₂		22	2 years	Winkler
Cadmium 2		985014	0.05-2.00 mg/L Cd ²⁺		10–19	1 year	Cadion
Carbonate hardne	ess 15	985015	1.25–18.75 °e	0.4-5.4 mmol/L H ⁺	20	1 year	Bromphenol blue
Chloride 50		985021	0.5–50.0 mg/L Cl ⁻		20	1 year	Mercury(II)-thiocyanate / Iron(III)-nitrate
Chloride 200		985019	5–200 mg/L Cl ⁻	0.10-1.00 g/L Cl ⁻	20	1 year	Mercury(II)-thiocyanate / Iron(III)-nitrate
Chlorine / Ozone 2	2	985017	0.05-2.50 mg/L Cl ₂	0.05-2.00 mg/L O ₃	20	1 year	DPD
Chlorine dioxide 5	5	985018	0.15-5.00 mg/L CIO ₂		20	1 year	DPD
Chromate 5		985024	0.05–2.00 mg/L Cr(VI) 0.005–0.500 mg/L Cr(VI) 1)	0.1–4.0 mg/L CrO ₄ ^{2–} 0.01–1.00 mg/L CrO ₄ ^{2–1)}	20	2 years	Carbazide
total Chromium 2		985059	0.05–2.00 mg/L Cr 0.005–0.500 mg/L Cr ¹⁾		20	2 years	Carbazide
COD 40	ISO 15705	985027	2–40 mg/L O ₂		20	1 year (2-8 °C)	Potassium dichromate
COD 60	ISO 15705	985022	5–60 mg/L O ₂		20	1 year (2-8 °C)	Potassium dichromate
COD 60 in salt wa	ater	985020	6-60 mg/L O ₂		20	1 year (2-8 °C)	Potassium dichromate
COD 160	ISO 15705	985026	15-160 mg/L O ₂		20	1 year	Potassium dichromate
COD 160 Hg-free	1	963026	15–160 mg/L O ₂		20	1 year (2-8 °C)	Potassium dichromate
COD 300		985033	50–300 mg/L O_2		20	1 year	Potassium dichromate
COD 600	ISO 15705	985030	50-600 mg/L O ₂		20	1 year	Potassium dichromate
COD 1500	ISO 15705	985029	100-1500 mg/L O ₂		20	1 year	Potassium dichromate
COD 1500 Hg-fre	e	963029	100-1500 mg/L O ₂		20	1 year	Potassium dichromate
COD 4000		985011	400-4000 mg/L O ₂		20	1 year	Potassium dichromate
COD 10000		985023	1.00-10.00 g/L O ₂		20	1 year	Potassium dichromate
COD 15000		985028	1.0–15.0 g/L O ₂		20	1 year	Potassium dichromate
COD 60000		985012	5.0-60.0 g/L O ₂		20	1 year	Potassium dichromate
COD LR 150	ISO 15705	985036	3–150 mg/L O ₂		20	1 year	Potassium dichromate

On other photometers than the $NANOCOLOR^{\otimes}$ VIS II measurement ranges and wavelengths can be different.

A more sensitive measuring range is possible by using semi-micro cuvettes 50 mm (REF 91950).
 Decomposition only possible in microwave.

<sup>Special filter can be necessary for filter photometers (Formaldehyde 10: 412 nm, Tin 3: 520 nm).
Without barcode.
Please see the instruction leaflet.</sup>

This test can be performed without a NANOCOLOR® reagent set. Determination only with NANOCOLOR® spectrophotometers and the PF-12^{Plus}.

Additionally required with first order: NANOCOLOR® TIC-Ex (REF 916993).

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

Authorium 07 ^{Al} Authorium 10 ^{Ammonium} 10 Ammonium 10 Ammonium 20 Ammonium 200 A		/	zočionočet			Lino Nated								
Alturnium 77 ⁻⁴ Ammonium 10 Ammonium 10 Ammonium 50 Ammonium 200 Ammonium 200 Ammonium 200 Ammonium 2000 ACX 3 BOD, (in Winker bottles) BOD, 7TT Cadmium 2 Carbonat hardness 15 Chloride 50 Chloride 60 Chloride 50 Chloride 60 Chloride 60 Chloride 60 COD 60 COD 60 in salt water COD 160 COD 160 Texter COD 160 COD 160 Texter COD 160 COD 160 COD 1600		Spectro	84, Sur	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4.30	St. St. St. St.	4 3 de		Manot	Manox	Crock of			Į.
Ammonium 10 Ammonium 50 Ammonium 100 Ammonium 2000 Ammonium 2000 AOX 3 BOD ₀ , fin Winkler bottlas) BOD ₀ -TT Cadmium 2 Carbonat hairdness 15 Ckloride 50 Ckloride 50 Ckloride 200 Chloride 200 Chloride 200 Chloride 200 Control Chloride 200 Control Chloride 30 Control	,			/	/		/	/					<u> </u>	
Ammonium 50 Ammonium 100 Ammonium 2000 Ammonium 2000 Ammonium 2000 ADX 3 BDD ₀ -TT Cadmium 2 Carbonat hardness 15 Chloride 50 Chloride 60														Ammonium 3
Ammonium 100 Ammonium 200 Ammonium 2000 Ammonium 2000 ADX 3 BODs, (in Winkler bottlas) BODs, (in Winkler bottlas) BODs, (in Winkler bottlas) Cadhium 2 Carbonat hardness 15 Chloride 50 Chloride 50 Chloride 50 Chloride 70 Chloride 70 Chloride 70 Chloride 50 Chloride 70 Chloride 70 Chloride 70 Chloride 70 Chloride 70 Chloride 70 Chloride 80 Chloride 70 Chloride 80 Chloride 80 Chloride 80 Chloride 90 Chloride 90 Chloride 90 Chloride 90 Cod 60 Cod 60 Cod 60 Cod 60 Cod 60 Cod 600 Cod 600 Cod 600 Cod 1500 Cod														Ammonium 10
Ammonium 200 Ammonium 2000 AOX 3 BODs (n Winkler battles) BODs-TT Cadmium 2 Carbonat hardness 15 Chloride 50 Chloride 50 Chloride 50 Chloride 200 Chlorine dioxide 5 Chromate 5 Corbonate														Ammonium 50
Ammonium 2000 AOX 3 BOD ₀ (in Winkler bottles) BOD ₀ -TT Cadmium 2 Carbonat hardness 15 Chloride 50 Chloride 50 Chloride 50 Chlorine / Ozone 2 Chlorine dioxide 5 Chromate 5 Chromate 5 Chromate 5 Chromate 5 CoD 40 COD 60 COD 60 COD 160 COD 160 COD 900 COD 1500 Hg-free COD 1500 COD 1500 Hg-free COD 1500 COD 1500 Hg-free														Ammonium 100
AOX 3 BOD ₆ (in Winkler bottles) BOD ₆ -TT Cadmium 2 Carbonat hardness 15 Chloride 50 Chloride 50 Chlorine / Ozone 2 Chlorine dioxide 5 Chromate 5 Chromate 6 Chromate 6 Code 60 C														Ammonium 200
BODs (in Winkler bottlies) BODs-TT Cadmium 2 Carbonat hardness 15 Chloride 50 Chloride 200 Chloride 200 Chlorine / Ozone 2 Chlorine dioxide 5 Chromate 5 total Chromium 2 COD 40 COD 60 COD 60 COD 160 Hg-free COD 500 COD 1500 Hg-free COD 1500 Hg-free COD 1500 Hg-free														Ammonium 2000
BOD ₅ -TT Cadmium 2 Carbonat hardness 15 Chloride 50 Chloride 50 Chloride 200 Chlorine / Ozone 2 Chlorine dioxide 5 Chromate 5 Chromate 5 Chromate 5 Chromate 5 Chromate 5 Code 60 Cod												•	•	AOX 3
Cadrium 2 Carbonat hardness 15 Chloride 50 Chloride 200 Chloride 200 Chlorine / Ozone 2 Chlorine dioxide 5 Chromate 5 Chromate 5 Cob 40 COD 60 COD 60 COD 160 COD 1500 COD			•											BOD ₅ (in Winkler bottles)
Carbonat hardness 15 Chloride 50 Chloride 200 Chloride 200 Chlorine / Ozone 2 Chlorine dioxide 5 Chromate 5 Chromate 5 Code 40 Code 60 Code 60 Code 60 Code 60 Code 60 Code 60 Code 600														BOD ₅ -TT
Chloride 200 Chloride 200 Chlorine / Ozone 2 Chlorine dioxide 5 Chromate 5 total Chromium 2 COD 40 COD 60 COD 60 COD 160 COD 160 Hg-free COD 1500 COD 1500 COD 1500 Hg-free COD 1500 Hg-free COD 1500 Hg-free														Cadmium 2
Chloride 200 Chloride 200 Chloride 200 Chloride dioxide 5 Chromate 5 total Chromium 2 COD 40 COD 60 COD 60 COD 160 COD 1500 COD 1500 COD 1500 Hg-free														Carbonat hardness 15
Chlorine / Ozone 2 Chlorine dioxide 5 Chromate 5 total Chromium 2 total Chromium 2 COD 40 COD 60 COD 60 COD 160 COD 160 COD 160 COD 1500 COD 1500 COD 1500 Hg-free COD 1500 Hg-free COD 1500 Hg-free													•	Chloride 50
Chlorine dioxide 5 Chromate 5 total Chromium 2 COD 40 COD 60 COD 60 COD 160 COD 1600 COD 1500			•									-	•	Chloride 200
Chromate 5 total Chromium 2 COD 40 COD 60 COD 60 COD 160 COD 160 COD 160 Hg-free COD 300 COD 1500 COD 1500 COD 1500 Hg-free COD 1500 Hg-free COD 1500 Hg-free														Chlorine / Ozone 2
total Chromium 2 COD 40 COD 60 COD 60 COD 60 in salt water COD 160 COD 160 COD 160 COD 300 COD 600 COD 1500 COD 1500 Hg-free COD 1500 Hg-free														Chlorine dioxide 5
COD 40 COD 60 COD 60 COD 60 in salt water COD 160 COD 160 COD 160 Hg-free COD 300 COD 500 COD 1500 COD 1500 COD 1500 Hg-free COD 1500 Hg-free												-		Chromate 5
COD 60 COD 60 in salt water COD 160 COD 160 COD 160 Hg-free COD 300 COD 600 COD 1500 COD 1500 Hg-free COD 1500 Hg-free													-	total Chromium 2
COD 60 in salt water COD 160 COD 160 COD 160 Hg-free COD 300 COD 600 COD 1500 COD 1500 Hg-free COD 4000				•										COD 40
COD 160 COD 160 COD 160 Hg-free COD 300 COD 600 COD 1500 COD 1500 Hg-free COD 4000		•	•	•									-	COD 60
COD 160 Hg-free COD 300 COD 600 COD 1500 COD 1500 Hg-free COD 4000		•		•								•		COD 60 in salt water
COD 300 COD 600 COD 1500 COD 1500 Hg-free COD 4000														COD 160
COD 600 COD 1500 COD 1500 Hg-free COD 4000		-	•										-	COD 160 Hg-free
COD 1500 COD 1500 Hg-free COD 4000														COD 300
COD 1500 Hg-free COD 4000														COD 600
■ ■ COD 4000														COD 1500
														COD 1500 Hg-free
														COD 4000
COD 10000														COD 10000
COD 15000														COD 15000
COD 60000														COD 60000
COD LR 150														COD LR 150

Test		REF	Measuring range NANOC	OLOR® VIS II	Number of tests	Shelf life	Method
COD HR 1500	ISO 15705	985038	20–1500 mg/L O ₂		20	1 year	Potassium dichromate
org. Complexing age	ents 10	985052	0.5–15.0 mg/L l _{BiC}	0.5-20.0 mg/L EDTA	10–19	1 year	Bismut xylenol orange
Copper 5		985053	0.10-7.00 mg/L Cu ²⁺		20	2 years	Cuprizone
Easily liberated Cyar	nide 04	985025	0.01-0.40 mg/l CN ⁻		19	1 year	Barbituric acid derivative
Cyanide 08		985031	0.02–0.80 mg/L CN ⁻ 0.005–0.100 mg/L CN ⁻¹⁾		20	1 year	Barbituric acid / Pyridine
■ DEHA 1 (Diethylhydr	oxylamine)	985035	0.05-1.00 mg/L DEHA		20	1 year	Redox reaction
Ethanol 1000		985838	0.10-1.00 g/L EtOH	0.013-0.130 Vol. % EtOH	23	2 years (< 0 °C)	Alcoholoxidase / Peroxidase
Fluoride 2		985040	0.1–2.0 mg/L F ⁻		20	1.5 years	Lanthanum-Alizarine complexone
Formaldehyde 8		985041	0.1-8.0 mg/L HCHO		20	2 years	Chromotropic acid
Formaldehyde 10 ³⁾		985046	0.20-10.00 mg/L HCHO 0.02-1.00 mg/L HCHO ¹⁾		20	2 years	Acetylacetone
■ Hardness Ca/Mg		985044	1.25–25.00 °e 0.2–3.6 mmol/L	5–50 mg/L Mg ²⁺ 10–100 mg/L Ca ²⁺	20	1.5 years	Phthalein purple
■ Hardness 20		985043	1.25–25.00 °e 0.2–3.6 mmol/L	5–50 mg/L Mg ²⁺ 10–100 mg/L Ca ²⁺	20	1.5 years	Phthalein purple
■ HC 300 (Hydrocarbo	ons)	985057	0.5-5.6 mg/L HC	30-300 mg/kg HC	20	1 year	Potassium dichromate
■ Iron 3		985037	0.10–3.00 mg/L Fe 0.02–1.00 mg/L Fe ¹⁾		20	1 year	Diphenylpyridyltriazine
Lead 5		985009	0.10-5.00 mg/L Pb ²⁺		20	1 year	4-(2-Pyridyl-(2)-azo)-resorcine (PAR)
Manganese 10		985058	0.1–10.0 mg/L Mn 0.02–2.00 mg/L Mn ¹⁾		20	1.5 years	Formaldoxime
Methanol 15		985859	0.2-15.0 mg/L MeOH		23	2 year (< 0 °C)	Alcoholoxidase / Peroxidase
Molybdenum 40		985056	1.0-40.0 mg/L Mo(VI)	1.6-65.0 mg/L MoO ₄ ²⁻	20	2 years	Thioglycolic acid
■ Nickel 4		985071	0.10–7.00 mg/L Ni ²⁺ 0.02–1.00 mg/L Ni ^{2+ 1)}		20	2 years	Dimethylglyoxime
■ Nitrate 8		985065	0.30-8.00 mg/L NO ₃ -N	1.3-35.0 mg/L NO ₃ -	20	2 years	2,6-Dimethylphenol
■ Nitrate 50		985064	0.3–22.0 mg/L NO ₃ -N	2-100 mg/L NO ₃ ⁻	20	2 years	2,6-Dimethylphenol
■ Nitrate 250		985066	4–60 mg/L NO ₃ -N	20-250 mg/L NO ₃ -	20	2 years	2,6-Dimethylphenol
Nitrite 2		985068	0.003-0.460 mg/L NO ₂ -N	0.02-1.50 mg/L NO ₂ -	20	1 year	Sulfanilic acid / 1-Naphthtylamine
■ Nitrite 4		985069	0.1–4.0 mg/L NO ₂ -N	0.3-13.0 mg/L NO ₂ -	20	1.5 years	Sulfanilic acid / 1-Naphthylamine
total Kjeldahl nitroge	n TKN 16	985067	1.00-16.0 mg/L TKN		20	1.5 years	2,6-Dimethylphenol
■ total Nitrogen TN _b 22	2	985083	0.5–22.0 mg/L N		20	1 year	2,6-Dimethylphenol
■ total Nitrogen TN _b 60)	985092	3–60 mg/L N		20	1 year	2,6-Dimethylphenol
■ total Nitrogen TN _b 22	20	985088	5–220 mg/L N		20	1 year	2,6-Dimethylphenol
Organic acids 3000		985050	30-3000 mg/L CH ₃ COOH	0.5–50.0 mmol/L CH ₃ COOH	20	1.5 years	Ethylenglycole/ Iron(III)-lons
Oxygen 12		985082	0.5–12.0 mg/L O ₂		22	2 years	Winkler

On other photometers than the NANOCOLOR® VIS II measurement ranges and wavelengths can be different.

1) A more sensitive measuring range is possible by using semi-micro cuvettes 50 mm (REF 91950).

2) Decomposition only possible in microwave.

3) Special filter can be necessary for filter photometers (Formaldehyde 10: 412 nm, Tin 3: 520 nm).

4) Without barcode.

5) Blossoe so the instruction 1-20.

^{**}Without barcode.

**Belasse see the instruction leaflet.

Britise to an be performed without a NANOCOLOR reagent set. Determination only with NANOCOLOR** spectrophotometers and the PF-12** NANOCOLOR**.

Additionally required with first order: NANOCOLOR TIC-Ex (REF 916993).

**Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

	/	St. St.			A STAN					, do		\$	
	Spotio	24, 28,	\$ Standard	4 3 G	dr. Stiff	\$ Styles	0 K. C.	oil ManOX	Aarot	Metal Ctack	St. Coo May	St.	, Š
·						/							COD HR 1500
													org. Complexing agents 10
													Copper 5
													Easily liberated Cyanide 04
	•												Cyanide 08
											-		DEHA 1 (Diethylhydroxylamine)
													Ethanol 1000
											•		Fluoride 2
													Formaldehyde 8
	•										•		Formaldehyde 10 ⁻³⁾
	•	•									•		Hardness Ca/Mg
	•	•									•		Hardness 20
													HC 300 (Hydrocarbons)
									•		•		Iron 3
										•			Lead 5
	•	•									•	•	Manganese 10
	•	•											Methanol 15
													Molybdenum 40
	•	•							•	-	•	•	Nickel 4
												-	Nitrate 8
													Nitrate 50
													Nitrate 250
													Nitrite 2
	•	•									•		Nitrite 4
								-					total Kjeldahl nitrogen TKN 16
													total Nitrogen TN _b 22
													total Nitrogen TN _b 60
													total Nitrogen TN _b 220
													Organic acids 3000
													Oxygen 12

Test	REF	Measuring range NANOCOLOR® VIS II			Shelf life	Method
Peroxide 2	985871	0.03–2.00 mg/L H ₂ O ₂		10–19	1 year (2–8 °C)	Peroxidase
■ pH 6.5–8.2 ⁴⁾	91872	pH 6.5–8.2		100	1.5 years	Phenol red
Phenolic Index 5	985074	0.2-5.0 mg/L Phenol		20	1.5 years	4-Aminoantipyrine
ortho- and total Phosphate 1	985076	0.05–1.50 mg/L P 0.010–0.800 mg/L P ¹⁾	0.2–5.0 mg/L PO ₄ ^{3–} 0.03–2.50 mg/L PO ₄ ^{3–1)}	20	1 year	Phosphomolybdenum blue
ortho- and total Phosphate 5	985081	0.20-5.00 mg/L P	0.5-15.0 mg/L PO ₄ 3-	20	1 year	Phosphomolybdenum blue
ortho- and total Phosphate 15	985080	0.30-15.00 mg/L P	1.0-45.0 mg/L PO ₄ ³⁻	20	1 year	Phosphomolybdenum blue
ortho- and total Phosphate 45	985055	5.0-50.0 mg/L P	15-150 mg/L PO ₄ ³⁻	20	1 year	Phosphomolybdenum blue
ortho- and total Phosphate 50	985079	10.0-50.0 mg/L P	30-150 mg/L PO ₄ 3-	19	3 years	Vanadate molybdate
ortho- and total Phosphate LR 1	985095	0.05-0.50 mg/L P	0.2-1.5 mg/L PO ₄ ³⁻	20	1 year	Phosphomolybdenum blue
■ POC 200	985070	20-200 mg/L POC	2-40 mg/L KWI	20	1.5 years	Turbidity
Potassium 50	985045	2-50 mg/L K ⁺		20	2 years	Potassium tetraphenylborate (Turbidity)
Residual hardness 1	985084	0.03-1.25 °e	0.004-0.180 mmol/L	20	1 year	Phthalein purple
Silver 3	985049	0.20-3.00 mg/L Ag ⁺	0.08-0.50 mg/L Ag ^{+ 1)}	20	1.5 years	Indicator
Starch 100	985085	5-100 mg/L starch		19	1 year	lodine-starch reaction
Sulfate 1000	985087	200-1000 mg/L SO ₄ ²⁻		20	3 years	Barium sulfate (Turbidity)
Sulfate LR 200	985062	20-200 mg/L SO ₄ ²⁻		20	3 years	Barium sulfate (Turbidity)
Sulfate MR 400	985060	40-200 mg/L SO ₄ ²⁻		20	3 years	Barium sulfate (Turbidity)
Sulfate HR 1000	985063	200-1000 mg/L SO ₄ ²⁻		20	2 years	Barium sulfate (Turbidity)
Sulfide 3	985073	0.05-3.00 mg/L S ²⁻		20	3 years	Methylene blue
Sulfite 10	985089	0.2-10.0 mg/L SO ₃ ²⁻	0.05-2.40 mg/L SO ₃ ²⁻¹⁾	20	1 year	Thiobenzoic acid derivative
Sulfite 100	985090	5-100 mg/L SO ₃ ²⁻		19	1 year	Potassium iodate / -iodide
Anionic surfactants 4	985032	0.20-4.00 mg/L MBAS	0.20-3.500 mg/L SDS	20	2 years	Methylene blue
Cationic surfactants 4	985034	0.20-4.00 mg/L CTAB		20	2 years	Disulfin blue
Nonionic surfactants 15	985047	0.3–15.0 mg/L Triton® X-100		20	2 years	TBPE
■ Thiocyanate 50	985091	0.5-50.0 mg/L SCN ⁻		20	2 years	Iron(III)-thiocyanate
■ Tin 3 ³⁾	985097	0.10-3.00 mg/L Sn		18	1 year	9-Phenyl-3-fluoron
■ TOC 30 ⁷⁾	985075	2.0–30.0 mg/L C		20	1 year (2-8 °C)	Indicator
■ TOC 300 ⁷⁾	985078	20-300 mg/L C		20	1 year (2-8 °C)	Indicator
■ TTC / Sludge activity	985890	5–150 µg ТРF	0.050-2.300 A	20	2 years (2-8 °C)	2,3,5-Triphenyltetrazoliumchloride (TTC)
■ Turbidity ⁶⁾	Test 9-06	0.1–1000 NTU		-	_	Turbidity
Zinc 4	985096	0.10-4.00 mg/L Zn ²⁺		20	1 year	Zincon
Zinc 6	985042	0.20-6.00 mg/L Zn ²⁺		20	1 year	4-(2-pyridylazo)resorcinol (PAR)
Zirconium 100	985001	5–100 mg/L Zr		20	3 years	Indicator

On other photometers than the NANOCOLOR® VIS II measurement ranges and wavelengths can be different.

¹⁾ A more sensitive measuring range is possible by using semi-micro cuvettes 50 mm (REF 91950).

²⁾ Decomposition only possible in microwave.

³ Special filter can be necessary for filter photometers (Formaldehyde 10: 412 nm, Tin 3: 520 nm). ⁴ Without barcode.

The last see the Institution Institution and Institution Instituti

/	Ar. Ar.			The state of the s					x0		8	
coctio	24,7°	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	D / 50	pt's fig	\$ Styles	o or	NanOX	Agrot Agrot	Nexon Ctook	S. CS. MIST	S. S	Į.
									/ 0		<u>/ </u>	Peroxide 2
	-				-							pH 6.5–8.2 ⁴⁾
												Phenolic index 5
	•							•				ortho- and total Phosphate 1
												ortho- and total Phosphate 5
												ortho- and total Phosphate 15
												ortho- and total Phosphate 45
												ortho- and total Phosphate 50
												ortho- and total Phosphate LR 1
												POC 200
	•					•						Potassium 50
-												Residual hardness 1
												Silver 3
												Starch 100
												Sulfate 1000
												Sulfate LR 200
												Sulfate MR 400
												Sulfate HR 1000
												Sulfide 3
												Sulfite 10
												Sulfite 100
												Anionic surfactants 4
												Cationic surfactants 4
	•											Nonionic surfactants 15
												Thiocyanate 50
												Tin 3 ³⁾
												TOC 30
•	•										•	TOC 300
												TTC/Sludge activity
•	•											Turbidity ⁶⁾
-	-											Zinc 4
	-											Zinc 6
												Zirconium 100

NANOCOLOR® robot tests

Fully automated water analysis

The companies MACHEREY-NAGEL and Skalar Analytical BV have collaborated on a robotic analyzer for fully automated water analysis in the laboratory.

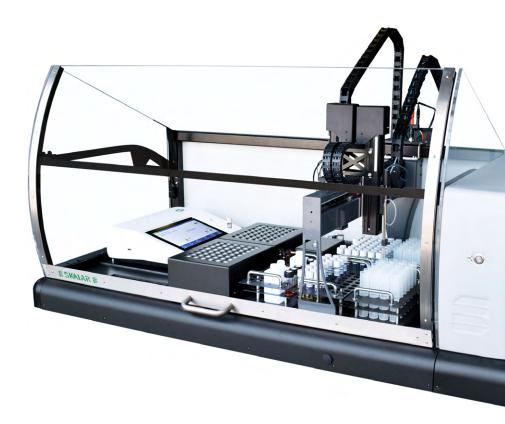
The test kit analyzer SP2000^{series} automates all the necessary handling steps of the photometric NANOCOLOR® tube tests such as sample (de)-capping, pipetting, addition of reagents, mixing, heating, cooling and measurement.

The flexibility and versatility of the test kit platform is reflected in the possibility to process 48 to 192 test tubes at once by using different test tube racks. The instrument can be configured for the analysis of one test kit application or for multiple test kit applications per analysis run, such as combinations of COD, total phosphate, total nitrogen and others. The evaluation of the tests is performed on the spectrophotometer NANOCOLOR® VIS II which is integrated on the platform. With the software the user can define if the application should be processed sequential or parallel.

Good to know

If you are interested in automated water analysis, please do not hesitate to contact us.

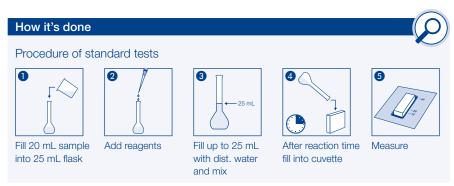
Ordering information


Test	REF	Measuring range NANOC	OLOR [®] VIS II ¹⁾	Number of tests	Shelf life	Method
Ammonium 3	985603	0.04-2.30 mg/L NH ₄ -N	0.05-3.00 mg/L NH ₄ +	20	1 year	Indophenol
Ammonium 50	985605	1–40 mg/L NH ₄ -N	1-50 mg/L NH ₄ +	20	1 year	Indophenol
Chloride 50	985621	0.5–50.0 mg/L Cl ⁻		20	1 year	Mercury(II)-thiocyanate/Iron(III)-nitrate
Chloride 200	985619	5–200 mg/L Cl ⁻		20	1 year	Mercury(II)-thiocyanate/Iron(III)-nitrate
COD 60	985622	5-60 mg/L O ₂		20	1 year (2-8 °C)	Potassium dichromate
COD 160	985626	10-160 mg/L O ₂		20	1 year	Potassium dichromate
COD 600	985630	50-600 mg/L O ₂		20	1 year	Potassium dichromate
COD 1500	985629	100-1500 mg/L O ₂		20	1 year	Potassium dichromate
COD LR 150	985636	3–150 mg/L O ₂		19	1 year	Potassium dichromate
COD HR 1500	985638	20-1500 mg/L O ₂		19	1 year	Potassium dichromate
COD 15000	985628	1.0-15.0 g/L O ₂		20	1 year	Potassium dichromate
Nitrate 8	985665	$0.30-8.00 \; \mathrm{mg/L} \; \mathrm{NO_3-N}$	1.3-35.0 mg/L NO ₃ -	20	2 years	2,6-Dimethylphenol
Nitrate 50	985664	0.3-22.0 mg/L NO ₃ -N	2-100 mg/L NO ₃ -	20	2 years	2,6-Dimethylphenol
Nitrite 2	985668	0.003-0.460 mg/L NO ₂ -N	0.02-1.50 mg/L NO ₂ -	20	1 year	Sulfanilic acid / 1-Naphthtylamine
Nitrite 4	985669	0.1-4.0 mg/L NO ₂ -N	0.3-13.0 mg/L NO ₂ -	20	1.5 years	Sulfanilic acid / 1-Naphthtylamine
total Nitrogen TN _b 22	985683	0.5-22.0 mg/L N		20	1 year	2,6-Dimethylphenol
total Nitrogen TN _b 220	985688	5–220 mg/L N		20	1 year	2,6-Dimethylphenol
Organic acids 3000	985650	30-3000 mg/L CH ₃ COOH	0.5-50.0 mmol/L CH ₃ COOH	20	1.5 years	Ethylenglycole / Iron(III)-lons
Phenolic Index 5	985674	0.2-5.0 mg/L Phenol		20	1.5 years	4-Aminoantipyrine
total Phosphate 1	985676	0.05-1.50 mg/L P	0.2-5.0 mg/L PO ₄ ³⁻	20	1 year	Phosphomolybdenum blue
total Phosphate 5	985681	0.20-5.00 mg/L P	0.5-15.0 mg/L PO ₄ ³⁻	20	1 year	Phosphomolybdenum blue
total Phosphate 15	985680	0.30-15.00 mg/L P	1.0-45.0 mg/L PO ₄ ³⁻	20	1 year	Phosphomolybdenum blue
ortho Phosphate 1	985607	0.05-1.50 mg/L P	0.2-5.0 mg/L PO ₄ ³⁻	20	1 year	Phosphomolybdenum blue
ortho Phosphate 15	985657	0.30-15.00 mg/L P	1.0-45.0 mg/L PO ₄ ³⁻	20	1 year	Phosphomolybdenum blue
Sulfide 3	985673	0.05-3.00 mg/L S ²⁻		20	3 years	Methylene blue

¹⁾ Evaluation only possible on the spectrophotometers NANOCOLOR® VIS II and NANOCOLOR® VIS.

²⁾ Please see the instruction leaflet

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.


/.	\$ \$
CS CS VICE	CA _E
	-

NANOCOLOR® standard tests

High sensitivity for photometric water analysis

NANOCOLOR® standard tests are convenient reagent kits for photometric analysis. With ready-to-use reagents up to 500 determinations are possible with only one test kit, resulting in low costs per determination for the user. Even very low limits can be evaluated precisely, due to high sample volumes and the measurement in 50 mm cuvettes. An enhancement of selectivity is possible for various parameters by extraction, where potentially interfering substances remain in the aqueous phase. The colored complex with the substance of interest is extracted with an organic solvent from the aqueous phase and is then analyzed within the organic phase.

Good to know

NANOCOLOR® standard tests offer maximum sensitivity and accuracy in photometric analysis.

Good to know

For further information on NANOCOLOR® photometers for the evaluation of NANOCOLOR® standard tests see page 12.

NANOCOLOR® standard tests

NANOCOLOR® standard tests

Ordering information

Test	REF	Measuring range NANOC	OLOR® VIS II	Number of tests 1)	Shelf life	Method
Aluminum ²⁾	91802	0.01-1.00 mg/L Al ³⁺		250	2 years	Eriochrome® Cyanine R
Ammonium	91805	0.01–2.0 mg/L NH ₄ -N	0.01-2.5 mg/L NH ₄ +	100	1 year	Indophenol
Cadmium 3)	918131	0.002-0.50 mg/L Cd ²⁺		25	1.5 years	Dithizone
Chloride	91820	0.2–125 mg/L Cl ⁻		250	1 year	Mercury(II)-thiocyanate / iron(III)-nitrate
Chlorine	91816	0.02-10.0 mg/L Cl ₂		250	3 years	DPD
Chlorine dioxide	918163	0.04-4.00 mg/L ClO ₂		50	1.5 years	DPD
Chromate	91825	0.01-3.0 mg/L Cr(VI)	0.01-6.0 mg/L CrO ₄ ²⁻	250	2 years	Carbazide
■ Cobalt	91851	0.002-0.70 mg/L Co ²⁺		250	2 years	5-CI-PADAB
Color (Hazen/DIN) 4)	Test 1-39	5-500 mg/L Pt (Hazen)	0.2-20.0 ¹ /m	-	_	Hazen
Copper	91853	0.01–10.0 mg/L Cu ²⁺		250	2 years	Cuprizone
Cyanide	91830	0.001-0.50 mg/L CN ⁻		250	1 year	Barbituric acid/pyridine
Detergents, anionic	91832	0.02-5.0 mg/L MBAS		40	3 years	Methylene blue
Detergents, cationic	91834	0.05-5.0 mg/L CTAB		40	3 years	Bromphenol blue
■ Fluoride	918142	0.05-2.00 mg/L F		500	2 years	SPADNS
■ Hydrazine	91844	0.002-1.50 mg/L N ₂ H ₄		250	1 year	4-(Dimethylamino)- benzaldehyde
■ Iron LR	918128	0.005–5.00 mg/L Fe		250	3 years	Triazine
■ Iron	91836	0.01–15.0 mg/L Fe		250	3 years	1,10-Phenanthroline
Lead 3)	918101	0.005-1.00 mg/L Pb ²⁺		50	1.5 years	Dithizone
Manganese LR	918126	0.005–3.00 mg/L Mn		250	1 year	TMB
Manganese	91860	0.01-10.0 mg/L Mn		250	3 years	Formaldoxime
■ Nickel	91862	0.01-10.0 mg/L Ni ²⁺		250	2 years	Dimethylglyoxime
■ Nitrate	91865	0.1-30.0 mg/L NO ₃ -N	0.5-140 mg/L NO ₃ -	100	2 years	2,6-Dimethylphenol
■ Nitrate Z	91863	0.02–1.0 mg/L NO ₃ -N	0.1–5.0 mg/L NO ₃ ⁻	500	1.5 years	Sulfanilic acid / 1-Naphthylamine
Nitrite	91867	0.002–0.30 mg/L NO ₂ -N	0.005-1.00 mg/L NO ₂ -	250	1.5 years	Sulfanilic acid / 1-Naphthylamine
Ozone	91885	0.01–1.50 mg/L O ₃		200	1 year (2-8 °C)	Indigotrisulfonate
Phenol	91875	0.01–7.0 mg/L Phenol		500	3 years	4-Nitroaniline
ortho-Phosphate	91877	0.04-6.5 mg/L PO ₄ -P	0.1-20.0 mg/L PO ₄ ³⁻	500	3 years	Phospho molybdenum blue
ortho-Phosphate	91878	0.2–17 mg/L PO ₄ -P	0.5–50 mg/L PO ₄ ^{3–}	500	3 years	Vanadate molybdate
SAC 4) 7)	Test 3-01	0.1-150.0 ¹ /m		_	_	-
■ Silica	91848	0.01–10.0 mg/L Si 0.002–0.1 mg/L Si ⁵⁾	0.02–10.0 mg/L SiO ₂ 0.005–0.200 mg/L SiO ₂ ⁵⁾	250	3 years	Silicomolybdenum blue
Sulfide	91888	0.01-3.0 mg/L S ²⁻		250	3 years	Methylene blue
■ Turbidity (Formazine/DIN) 4)	Test 1-92	1-100 TE/F (= FAU)	0.5-40.0 ¹ /m	-	-	Turbidity
■ Zinc	91895	0.02-3.0 mg/L Zn ²⁺		250	3 years	Zincon

¹⁾ Maximal number of tests. The number of tests depends on the used sample volume. ²⁾ Decomposition in micro wave is possible.

<sup>All Organic phase tetrachloro ethylene p.a. or tetrachloro methane is needed additionally.

All No NANOCOLOR® test is necessary for this determination.

Highly sensitive measurement.

Please see the instruction leaflet.</sup>

The set can only be performed with NANOCOLOR® W/vs II.

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

Auminium ² Auminium ³ Auminium ³ Auminium ³ Auminium ³ Auminium ³ Cadmilium ³ Chloride Chlorine Chlorine Chlorine Color (Hazanz'DIN) ³ Copper Cyanide Detergents, catonic Fluoride Fluori	/	notoriales	Juno	Agiocoliic			Sall Sall Sall Sall Sall Sall Sall Sall	x. /	\$	
Ammonium Cadmium 3 Chloride Chlorine Cobalt Colper (Hazer/DiN) 9 Copper Copp	Spectic	So of	and Single	Manot	HanOt	Single	Clogs.			₹.
Ammonium Cadmium 3 Chloride Chlorine Cobalt Colper (Hazer/DiN) 9 Copper Copp							/		/	
Chloride Chlorine Chlorine Chlorine Chlorine Chlorine Chlorine Chlorine Chlorine Chlorine Chloride Chromate Cobalt Color (Hazer/DIN) ⁴ Copper Cyanide Detergents, anionic Detergents, anionic Fluoride Fluoride Fluoride Fluoride Fluoride Fluoride Nitrate Nitrate Nitrate Nitrate Nitrate SAC ⁴ ⁷ Silica Sulfide Trurbidity (Formazine/DIN) ⁴										Ammonium
Chlorine Chlorine dioxide Chlorine dioxide Chromate Cobalt Cotor (Hazen/DIN) ⁻⁹ Copper Cyanide Detergents, anionic Detergents, anionic Fluoride Hydrazine Iron LR Iron Lead ⁻⁹ Manganese LR Manganese Nickel Nitrate Nitrate Z Nitrite Czone Phenol ortho-Phosphate ortho-Phosphate SAC ⁻⁹⁻⁷ Sillica Sulfide Turbidity (Formazine/DIN) ⁻⁹										Cadmium 3)
Chlorine dioxide Chromate Cobalt Color (Hazer/DIN) ⁴¹ Copper Cyanide Copper Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron LR Iron Lead ³¹ Manganese LR Manganese LR Mitrate Nitrate Nitrate Nitrate Nitrate Nitrate Sac ⁴⁷ Silica Sulfide Turbicity (Formazine/DIN) ⁴¹ Cobalt Color (Hazer/DIN) ⁴¹ Copper Cyanide Copper Cyan	-	-							-	Chloride
Chromate Cobalt Color (Hazen/DIN) 4 Copper Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron LR Iron Lead 3) Manganese LR Manganese LR Mirate Nitrate Nitrate Nitrate Nitrate Syde 4 7 Silica Sulfide Turbidity (Formazine/DIN) 4										Chlorine
Cobalt Color (Hazer/DIN) 4 Copper Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron LR Iron Lead 30 Manganese LR Manganese LR Nitrate Nitrate Z Nitrate Z Nitrite Czone Phenol ortho-Phosphate ortho-Phosphate sAC 4 77 Silica Sulfide Turbidity (Formazine/DIN) 4										Chlorine dioxide
Color (Hazen/DIN) ⁴⁾ Copper Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron LR Iron Lead ⁴⁾ Manganese LR Manganese Nickel Nitrate Nitrate Z Nitrite Phenol Ozone Phenol Ortho-Phosphate Ortho-Phosphate SAC ⁴⁾ ⁷⁾ Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾										Chromate
Copper Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron LR Iron Lead ⁽⁵⁾ Manganese LR Manganese Nickel Nitrate Nitrate Z Nitrite Ozone Phenol ortho-Phosphate SAC ⁽⁴⁾ ⁽⁷⁾ Silica Sulfide Turbidity (Formazine/DIN) ⁽⁴⁾										Cobalt
Cyanide Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron LR Iron Lead ³⁷ Manganese LR Manganese Nickel Nitrate Nitrate Z Nitrite Ozone Phenol ortho-Phosphate SAC ⁴⁷ Silica Sulfide Turbidity (Formazine/DIN) ⁴										Color (Hazen/DIN) 4)
Detergents, anionic Detergents, cationic Fluoride Hydrazine Iron LR Iron Lead ³⁾ Manganese LR Manganese Nickel Nitrate Nitrate Z Nitrite Ozone Phenol ortho-Phosphate ortho-Phosphate SAC ^{4) 7)} Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾										Copper
Detergents, cationic Fluoride Hydrazine Iron LR Iron Lead ⁻³ Manganese LR Manganese Nickel Nitrate Nitrate Nitrate Nitrite Phenol ortho-Phosphate ortho-Phosphate SAC ⁻⁴⁷ Silica Sulfide Turbiclity (Formazine/DIN) ⁻⁶										Cyanide
Fluoride Hydrazine Iron LR Iron Lead ³⁰ Manganese LR Manganese Nickel Nitrate Nitrate Nitrate Z Nitrite Cozone Phenol ortho-Phosphate ortho-Phosphate SAC ^{4) 77} Silica Sulfide Turbidity (Formazine/DIN) ⁴⁰										Detergents, anionic
Hydrazine Iron LR Iron Lead ³⁾ Manganese LR Manganese Nickel Nitrate Nitrate Nitrate Z Nitrate Sac ⁴ ⁷⁾ Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾										Detergents, cationic
Iron Lead 3) Manganese LR Manganese Nickel Nitrate Nitrate Z Nitrate Ozone Phenol ortho-Phosphate sAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)										Fluoride
Iron Lead 3) Manganese LR Manganese Nickel Nitrate Nitrate Z Nitrate Z Phenol ortho-Phosphate ortho-Phosphate sAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)	-	-	•					•	-	Hydrazine
Lead ³⁾ Manganese LR Manganese Nickel Nitrate Nitrate Z Nitrite Ozone Phenol ortho-Phosphate ortho-Phosphate SAC ^{4) 7)} Silica Turbidity (Formazine/DIN) ⁴⁾										Iron LR
Manganese LR Manganese Nickel Nitrate Nitrate Z Nitrite Czone Phenol ortho-Phosphate ortho-Phosphate SAC ^{4) 7)} Silica Turbiclity (Formazine/DIN) ⁴⁾										Iron
Manganese Nickel Nitrate Nitrate Nitrate Z Nitrite Ozone Phenol ortho-Phosphate ortho-Phosphate SAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)										Lead ³⁾
Nitrate Nitrate Nitrate Z Nitrate Z Nitrite Ozone Phenol ortho-Phosphate ortho-Phosphate SAC ^{4) 7)} Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾										Manganese LR
Nitrate Z Nitrate Z Nitrite Phenol rtho-Phosphate sAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)										Manganese
Nitrate Z Nitrite Ozone Phenol ortho-Phosphate ortho-Phosphate SAC ^{4) 7)} Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾										Nickel
Nitrite Ozone Phenol ortho-Phosphate ortho-Phosphate SAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)										Nitrate
Phenol ortho-Phosphate ortho-Phosphate SAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)	-	-							-	Nitrate Z
Phenol ortho-Phosphate ortho-Phosphate SAC 4) 7) Silica Sulfide Turbidity (Formazine/DIN) 4)	-	-						•	-	Nitrite
ortho-Phosphate ortho-Phosphate SAC ^{4) 7)} Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾										Ozone
ortho-Phosphate SAC ^{4) 7)} Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾										Phenol
ortho-Phosphate SAC ^{4) 7)} Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾										ortho-Phosphate
Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾										
Silica Sulfide Turbidity (Formazine/DIN) ⁴⁾										
Turbidity (Formazine/DIN) ⁴⁾	-	-	•					•		Silica
(Formazine/DIN) 4)										Sulfide
Zinc	-							•		
										Zinc

NANOCOLOR® ECO

Flexible reagent kits for photometric analysis

NANOCOLOR® ECO reagent kits are convenient and flexible test sets for photometric analysis. They impress with their simple test procedure at low determination costs. A set includes all reagents needed for 100 determinations. The tests are performed and measured in 16 mm (REF 91680) or 24 mm (REF 936101) round test tubes without the need of additional beakers or volumetric flasks. The sensitivity can be increased by transferring the solution into a 50 mm semi micro cell (REF 91950). The reagent kits from the NANOCOLOR® ECO line are based on reaction chemistry of recognized standard methods and norms. All together, NANOCOLOR® ECO reagent kits combine convenient test procedures with secure and reliable measuring results.

How it's done

Procedure of NANOCOLOR® ECO tests

Add sample to cuvette

Add reagents and mix

Measure after reaction time

Good to know

NANOCOLOR® ECO reagent kits include liquid or solid reagents which can be easily dosed with a pipette or tweezers.

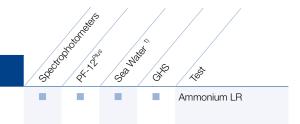
Ordering information

Test	REF	Measuring range	Shelf life	Number of tests	Method
Ammonium LR	976003	0.040– 1.80 mg/L NH ₄ -N (16 mm) 0.020– 1.15 mg/L NH ₄ -N (24 mm) 0.010– 0.500 mg/L NH ₄ -N (50 mm)	1.5 years	100	Indophenol – according to APHA 4500-NH3 F, ISO 7150-1, DIN 38406-E5 and EPA 350.1

1) See instruction leaflet

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

Easy


- Pictograms as step-by-step instruction
- Tests are performed directly in 16 mm or 24 mm test tubes
- No complex sample preparation in volumetric flask or beaker

Reliable

- Reaction chemistry based on internationally accepted standard methods
- Constant quality from batch to batch
- Method validation data available for each reagent kit

Flexible

- Measurement in 16 mm or 24 mm round tubes
- Increased sensitivity by transfer into 50 mm semi micro cell
- Convenient test procedure with high sensitivity

NANOCONTROL

Analytical quality control for a complete analytical system

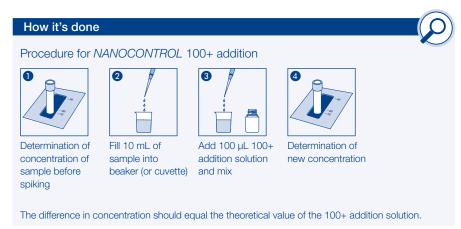
With NANOCONTROL the user can check the complete NANOCOLOR® analytical system and his own work comprehensively and prove the correctness of his results. The performance of consequent analytical quality assurance allows for an objective proof of the accuracy of the photometric analysis resulting in acceptance by local authorities. MACHEREY-NAGEL offers a complete system to test and document the performance of the system for internal quality control. Together with our customers we developed a user-friendly system, future-proof, and tailor-made for the needs of the operator. Continuous development and innovation make us the market leader in all questions regarding quality control in photometric water analysis.

Single and multistandards

In NANOCONTROL standards the respective reference substances are dissolved with a defined concentration. This concentration of the standard solution is selected to be in the middle of the measuring range of the suitable test kit with a narrow confidence interval. The standard solution is applied in the test instead of a normal water sample. The test kit is then handled as described in the instructions. When the result of the test is within the confidence interval, the operator can be sure that all components of his analytical system are working correctly and that no handling error was made. In case of deviations from the given value, equipment and test kit have to be monitored and checked. In addition to solutions with only one standard substance also multistandards are available, containing a mixture of different standard substances. They are designed for special fields of application, e.g. waste water or drinking water analysis.

Hereby various characteristic parameters can be controlled with only one standard solution and the results can then be conveniently documented.

Good to know


All requirements on quality assurance (IQC) can be fulfilled with the NANOCONTROL System from MACHEREY-NAGEL.

Find an overview on page 16.

Spiking solutions

The concentration of a parameter in samples is increased by a defined value by spiking it with a standard addition using *NANOCONTROL* 100+ solutions. Possible interferences in the sample matrix can be detected under consideration of the recovery rates. This kind of plausibility test is especially recommended if an unknown sample has to be analyzed for the first time, or if it is known that the sample contains interfering substances as e.g. large amounts of salt or proteins. In addition to a dilution, this method can give insight to possible sources of error, if there is a continuous deviation from the expected measurement result. *NANOCONTROL* 100+ solutions are available for multistandards as well as single standards.

NANOCONTROL

Ordering information

Standards

Standard	REF	Test number	Test	Number of tests	Concentration of standard 1)	Confidence interval
Single standards						
AOX 3	92507	0-07	AOX 3	20	1.0 mg/L AOX	0.8-1.2 mg/L AOX
■ BOD ₅	92582	8-22/8-25	BOD ₅ /BOD ₅ -TT	10	210 mg/L O ₂	170–250 mg/L O ₂
Chlorine	92517	0-17 1-16	Chlorine / Ozone 2 Chlorine	30	0.80 mg/L Cl ₂ 1.00 mg/L Cl ₂	0.70–0.90 mg/L $\rm Cl_2$ 0.90–1.10 mg/L $\rm Cl_2$
■ Chromate	92524	0-24 0-59 1-25	Chromate 5 total Chromium 2 Chromate	15	2.0 mg/L CrO ₄ ²⁻ 0.90 mg/L Cr 0.40 mg/L CrO ₄ ²⁻	1.8–2.2 mg/L CrO ₄ ^{2–} 0.80–1.00 mg/L Cr 0.36–0.44 mg/L CrO ₄ ^{2–}
COD 60	92522	0-27/0-22	COD 40/COD 60	15	30 mg/L O ₂	26–34 mg/L O ₂
COD 160	92526	0-26/0-33/0-36	COD 160/COD 300/COD LR 150	15	100 mg/L O ₂	90–110 mg/L O ₂
COD 1500	92529	0-30/0-29/0-38	COD 600/COD 1500/COD HR 1500	15–30	400 mg/L O ₂	360-440 mg/L O ₂
COD 15000	92528	0-23 0-28	COD 10000 COD 15000	30–150	4.00 g/L O ₂ 4.0 g/L O ₂	3.60–4.40 g/L O ₂ 3.6–4.4 g/L O ₂
Nitrite	92568	0-68 0-69 1-67	Nitrite 2 Nitrite 4 Nitrite	15–150	0.30 mg/L NO ₂ -N 2.10 mg/L NO ₂ -N 0.060 mg/L NO ₂ -N	0.25-0.35 mg/L NO ₂ -N 1.9-2.3 mg/L NO ₂ -N 0.054-0.066 mg/L NO ₂ -N
ortho-Phosphate	92576	0-76 1-77	ortho- and total Phosphate 1 ortho-Phosphate	15	1.00 mg/L PO ₄ -P 0.2 mg/L PO ₄ -P	0.90–1.10 mg/L PO₄-P 0.18–0.22 mg/L PO₄-P
Sulfate	92562	0-62	Sulfate LR 200	15	120 mg/L SO ₄ ²⁻	110-130 mg/L SO ₄ ²⁻
Sulfite	92590	0-90	Sulfite 100	15	50 mg/L SO ₃ ²⁻	45-55 mg/L SO ₃ ²⁻
TOC 30	92575	0-75	TOC 30	15	10 mg/L C	8.5–11.5 mg/L C
■ TOC 300	92578	0-78	TOC 300	15	100 mg/L C	85–115 mg/L C
Multistandards						
Sewage outflow 1	925011	0-04 0-26 0-33 0-11 0-36 0-65 0-64 1-65 0-81	Ammonium 10 COD 160 COD 300 COD 4000 COD LR 150 Nitrate 8 Nitrate 50 Nitrate ortho- and total Phosphate 5 total Nitrogen TN _b 60	12–120	3.0 mg/L NH ₄ -N 114 mg/L O ₂ 114 mg/L O ₂ 2600 mg/L O ₂ 114 mg/L O ₂ 6.00 mg/L NO ₃ -N 6.0 mg/L NO ₃ -N 6.0 mg/L NO ₃ -N 2.50 mg/L P 20 mg/L N	$2.7-3.3 \text{ mg/L NH}_4\text{-N}$ $103-125 \text{ mg/L O}_2$ $103-125 \text{ mg/L O}_2$ $2340-2860 \text{ mg/L O}_2$ $103-125 \text{ mg/L O}_2$ $5.20-6.80 \text{ mg/L NO}_3\text{-N}$ $5.2-6.8 \text{ mg/L NO}_3\text{-N}$ $5.2-6.8 \text{ mg/L NO}_3\text{-N}$ $2.25-2.75 \text{ mg/L N}$
Sewage outflow 2 Sewage inflow	925010	0-03 0-27 0-22 0-65 0-64 1-65 0-76 0-81 0-95 0-83 0-67 0-05 0-30 0-29 0-28	Ammonium 3 COD 40 COD 60 Nitrate 8 Nitrate 50 Nitrate total Phosphate 1 total Phosphate 5 total Phosphate LR total Nitrogen TN _b 22 TKN 16 Ammonium 50 COD 600 COD 1500 COD 15000	30–300	1.50 mg/L NH ₄ -N 30 mg/L O ₂ 30 mg/L O ₂ 3.00 mg/L NO ₃ -N 3.0 mg/L NO ₃ -N 3.0 mg/L NO ₃ -N 1.00 mg/L P 1.00 mg/L P 1.00 mg/L P 12.0 mg/L N 9.00 mg/L TKN 25.0 mg/L NH ₄ -N 400 mg/L O ₂ 400 mg/L O ₂ 10.0 g/L O ₂	1.30–1.70 mg/L NH ₄ -N 26–34 mg/L O ₂ 26–34 mg/L O ₂ 2.60–3.40 mg/L NO ₃ -N 2.6–3.4 mg/L NO ₃ -N 2.6–3.4 mg/L NO ₃ -N 0.90–1.10 mg/L P 0.90–1.10 mg/L P 0.22–0.28 mg/L P 10.0–14.0 mg/L N 6.6–11.4 TKN 22.0–28.0 mg/L NH ₄ -N 360–440 mg/L O ₂ 9.0–11.0 g/L O ₂
		0-12 0-38 0-64 0-66 0-80 0-88	COD 60000 COD HR 1500 Nitrate 50 Nitrate 250 total Phosphate 15 total Nitrogen TN _b 220		10.0 g/L O ₂ 400 mg/L O ₂ 15.0 mg/L NO ₃ -N 15 mg/L NO ₃ -N 8.00 mg/L P 75 mg/L N	9.0–11.0 g/L O_2 360–440 mg/L O_2 13.5–16.5 mg/L NO_3 - N 13–17 mg/L NO_3 - N 7.20–8.80 mg/L P 67–83 mg/L N

 $^{^{\}mbox{\scriptsize 1)}}\mbox{\sc Please}$ see the instruction leaflet/evaluation sheet.

Shelf life 6 weeks after first opening/see instruction leaflet.

GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

Addition	Shelf life 2)	GHS	Standard
			Single standards
1.0 mg/L AOX	1 year		AOX 3
-	1 year (2-8 °C)		BOD ₅
-	1 year	•	Chlorine
$0.5 \mathrm{mg/L} \mathrm{CrO_4}^{2-}$ $0.22 \mathrm{mg/L} \mathrm{Cr}$ $0.5 \mathrm{mg/L} \mathrm{CrO_4}^{2-}$	1 year	•	Chromate
_	1 year (2-8 °C)		COD 60
-	1 year (2-8 °C)		COD 160
-	1 year (2-8 °C)		COD 1500
-	1 year (2-8 °C)		COD 15000
0.02 mg/L NO ₂ -N -	1 year		Nitrite
0.02 mg/L NO ₂ -N			
0.10 mg/L PO ₄ -P 0.10 mg/L PO ₄ -P	1 year		ortho-Phosphate
_	1 year		Sulfate 200
_	1 year		Sulfite
_	1 year (2-8 °C)		TOC 30
-	1 year (2-8 °C)		TOC 300
			Multistandards
1.0 mg/L NH ₄ -N 25 mg/L O ₂ 25 mg/L O ₂ - - 1.50 mg/L NO ₃ -N 1.5 mg/L NO ₃ -N 1.5 mg/L NO ₃ -N 0.25 mg/L P 10 mg/L N	6 months		Sewage outflow 1
0.30 mg/L NH ₄ -N 10 mg/L O ₂ 10 mg/L O ₂ 3.00 mg/L NO ₃ -N 3.0 mg/L NO ₃ -N 3.0 mg/L NO ₃ -N 0.30 mg/L P 0.30 mg/L P 0.10 mg/L P 3.3 mg/L N 0.30 mg/L N	6 months (2–8 °C)		Sewage outflow 2
10 mg/L NH ₄ -N 100 mg/L O ₂ 100 mg/L O ₂ - - 100 mg/L O ₂ 6.0 mg/L NO ₃ -N 6 mg/L NO ₃ -N 1.00 mg/L P 20 mg/L N	1 year		Sewage inflow

NANOCONTROL

Standard	REF	Test number	Test	Number of tests	Concentration of standard 1)	Confidence interval
■ Metals 1	925015	0-14 1-13 0-21 0-19 0-24 0-59 1-25 0-37 1-36 1-28 0-40 1-42 0-62 0-60 0-96 1-95 0-42	Cadmium 2 Cadmium Chloride 50 Chloride 200 Chromate 5 + NanOx Metal total Chromium 2 Chromate + NanOx Metal Iron 3 Iron Iron LR Fluoride 2 Fluoride Sulfate LR 200 Sulfate MR 400 Zinc 4 Zinc Zinc 6	15-60	1.00 mg/L Cd ²⁺ 0.10 mg/L Cd ²⁺ 20 mg/L Cl ⁻ 80 mg/L Cl ⁻ 1.0 mg/L Cr 1.0 mg/L Cr 1.0 mg/L Cr 1.0 mg/L Fe ³⁺ 0.10 mg/L Fe ³⁺ 0.10 mg/L Fe ³⁺ 1.00 mg/L F ² 80 mg/L SO ₄ ²⁻ 80 mg/L SO ₄ ²⁻ 1.00 mg/L Zn ²⁺ 0.10 mg/L Zn ²⁺ 1.00 mg/L Zn ²⁺	0.80–1.20 mg/L Cd ²⁺ 0.08–0.12 mg/L Cd ²⁺ 17–23 mg/L Cl ⁻ 70–90 mg/L Cl ⁻ 0.8–1.2 mg/L Cr 0.8–1.2 mg/L Cr 0.8–1.2 mg/L Cr 0.80–1.20 mg/L Fe ³⁺ 0.08–0.12 mg/L Fe ³⁺ 0.08–0.12 mg/L F ² 0.80–1.20 mg/L F ⁻ 70–90 mg/L SO ₄ ²⁻ 70–90 mg/L SO ₄ ²⁻ 0.80–1.20 mg/L Zn ²⁺ 0.80–0.12 mg/L Zn ²⁺ 0.80–0.12 mg/L Zn ²⁺
■ Metals 2	925016	0-09 1-10 0-45 0-53/0-54 1-53 0-61/0-71 1-62	Lead 5 Lead Potassium 50 Copper 5 / Copper 7 Copper Nickel 7 / Nickel 4 Nickel	15	2.50 mg/L Pb ²⁺ 0.25 mg/L Pb ²⁺ 20 mg/L K ⁺ 2.00 mg/L Cu ²⁺ 0.60 mg/L Cu ²⁺ 2.00 mg/L Ni ²⁺ 0.60 mg/L Ni ²⁺	2.25–2.75 mg/L Pb ²⁺ 0.22–0.28 mg/L Pb ²⁺ 18–22 mg/L K ⁺ 1.80–2.20 mg/L Cu ²⁺ 0.50–0.70 mg/L Cu ²⁺ 1.80–2.20 mg/L Ni ²⁺ 0.50–0.70 mg/L Ni ²⁺
■ Seepage	925013	0-08 0-06 0-23 0-28 0-66 0-55 0-79	Ammonium 100 Ammonium 200 COD 10000 COD 15000 Nitrate 250 total Phosphate 45 ortho-Phosphate 50	15–300	40 mg/L NH ₄ -N 80 mg/L NH ₄ -N 4.00 g/L O ₂ 4.0 g/L O ₂ 30 mg/L NO ₃ -N 25.0 mg/L P 25.0 mg/L PO ₄ -P	$36-44 \text{ mg/L NH}_4-\text{N}$ $72-88 \text{ mg/L NH}_4-\text{N}$ $3.60-4.40 \text{ g/L O}_2$ $3.6-4.4 \text{ g/L O}_2$ $27-33 \text{ mg/L NO}_3-\text{N}$ $22.0-28.0 \text{ mg/L PO}_4-\text{P}$
■ Drinking water	925018	0-98 1-02 1-05 0-21 1-20 0-37 1-36 0-58 1-60 0-86 0-62	Aluminum 07 Aluminium Ammonium Chloride 50 Chloride Iron 3 Iron Manganese 10 Manganese Sulfate 200 Sulfate LR 200	15–30	0.50 mg/L Al ³⁺ 0.50 mg/L Al ³⁺ 0.20 mg/L NH ₄ -N 20 mg/L Cl ⁻ 20 mg/L Cl ⁻ 1.50 mg/L Fe ³⁺ 1.50 mg/L Fe ³⁺ 1.5 mg/L Mn ²⁺ 1.50 mg/L Mn ²⁺ 120 mg/L SO ₄ ²⁻ 120 mg/L SO ₄ ²⁻	0.44–0.56 mg/L Al ³⁺ 0.44–0.56 mg/L Al ³⁺ 0.17–0.23 mg/L NH ₄ -N 17–23 mg/L Cl ⁻ 1.30–1.70 mg/L Fe ³⁺ 1.30–1.70 mg/L Fe ³⁺ 1.3–1.7 mg/L Mn ²⁺ 1.30–1.70 mg/L Mn ²⁺ 1.30–1.38 mg/L SO ₄ ²⁻ 102–138 mg/L SO ₄ ²⁻

Please see the instruction leaflet/evaluation sheet.
 Shelf life 6 weeks after first opening/see instruction leaflet.
 GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

Addition	Shelf life 2)	GHS	Standard
- 10 mg/L Cl ⁻ 50 mg/L Cl ⁻ 0.2 mg/L Cr 0.2 mg/L Cr 0.2 mg/L Cr 0.30 mg/L Fe ³⁺ 0.30 mg/L Fe ³⁺ 0.30 mg/L Fe ³⁺ 0.5 mg/L F ⁻ 0.50 mg/L F ⁻ 50 mg/L SO ₄ ²⁻ 50 mg/L SO ₄ ²⁻ 0.40 mg/L Zn ²⁺ 0.40 mg/L Zn ²⁺ 0.40 mg/L Zn ²⁺ 0.40 mg/L Zn ²⁺	1 year		Metals 1
0.50 mg/L Pb ²⁺ - 10 mg/L K ⁺ 0.70 mg/L Cu ²⁺ 0.70 mg/L Cu ²⁺ 0.70 mg/L Ni ²⁺ 0.70 mg/L Ni ²⁺	1 year		Metals 2
30 mg/L NH ₄ -N 30 mg/L NH ₄ -N - - 10 mg/L NO ₃ -N 5.0 mg/L P 5.0 mg/L PO ₄ -P	1 year		Seepage
0.20 mg/L Al ³⁺ 0.20 mg/L Al ³⁺ 0.20 mg/L NH ₄ -N 5.0 mg/L Cl ⁻ 5.0 mg/L Cl ⁻ 0.20 mg/L Fe ³⁺ 0.20 mg/L Fe ³⁺ 1.0 mg/L Mn ²⁺ 0.20 mg/L Mn ²⁺ 50 mg/L SO ₄ ²⁻ 50 mg/L SO ₄ ²⁻	1 year		Drinking water

NANOCOLOR® reagents for sample decomposition

Sample preparation for photometric analysis

Usually only dissolved compounds of a parameter are detected in water analysis. In strongly contaminated waters and industrial waste water these parameters are often bound in complexes or other structures and are therefore not directly accessible for the respective test. If it is necessary to determine the total amount of these substances, a decomposition step has to be done prior to analysis, where on most cases large amounts of organic material have to be decomposed. Within the NANOCOLOR® system there are various rapid and easy methods available for conventional sample decomposition with solid reagents and kits with liquid reagents for complex matrices. In some of the NANOCOLOR® tube tests the reagents for sample preparation are already included and pre-dosed in additional test tubes next to the cuvettes. This is the perfect combination for the determination of total parameters such as total nitrogen or total chromium. Other reagents for sample preparation are available separately and are suitable for more than one parameter. After digestion the samples are then processed as described in the instructions for the respective NANOCOLOR® test kit.

NANOCOLOR® NanOx N – Oxidative digestion of samples containing nitrogen

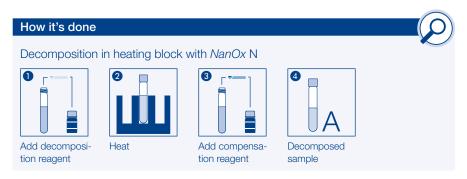
NANOCOLOR® NanOx N consists of an easy-to-dose solid oxidation reagent (peroxodisulfate) and a compensation reagent to eliminate interfering substances. After digestion, all inorganic and organic nitrogen compounds in the sample have been converted to nitrate and can be detected. The digestion of larger sample volumes allows a multiple determination from just one preparation.

NANOCOLOR® NanOx Metal - Oxidation of samples containing heavy metals

Undissolved metal ions and metal oxides are dissolved with the aid of acids and heat, metal ions are de-complexated and adsorptive or interfering substances are eliminated. Optimal recovery rates can be found in the analysis of heavy metals. NANOCOLOR® NanOx Metal consists of an easy-to-dose solid oxidation reagent (peroxodisulfate) and a neutralizing reagent to adjust the pH value for the following determination of different metals. In addition to the digestion in the heating block, it is possible to digest samples in less time using a microwave.

Good to know

For further accessories for digestions with NANOCOLOR® NanOx Metal in a heating block or a microwave see page 112.


NANOCOLOR® reagents for sample decomposition

NANOCOLOR® crack set

For a more powerful and complete digestion of resistant samples we recommend to use the NANOCOLOR® crack set. The included liquid reagents allow an oxidative sample preparation under acidic conditions (peroxodisulfate/sulfuric acid) and normal pressure at 100 °C in the heating block.

NANOCOLOR® sludge

In Germany, the sewage sludge regulation regularizes the use of sludge as fertilizer in agriculture and in market gardens. Therein a limit for seven heavy metals is established. The determination of these parameters is possible with high accuracy using NANOCOLOR® sludge (aqua regia) for digestion. A thorough training is recommended to learn the special working techniques before using the kit. Detailed instructions regarding sludge analysis can be provided free of charge.

Ordering information

Description	REF	Number of decompositions	Shelf life	GHS
Determination of total Nitrogen				
■ NANOCOLOR® NanOx N solid reagents for the oxidative digestion prior to total nitrogen determination (heating block or microwave)	918979	50–100	1 year	
Determination of total metals and phosphorous				
■ NANOCOLOR® NanOx Metal solid reagents for the oxidative decomposition of samples containing heavy metals and total phosphate (heating block or microwave)	918978	75–150	1 year	
Crack set for aqueous systems				
■ Crack set incl. sulfuric acid/potassium peroxodisulfate for the oxidative digestion in the heating block	91808	100	3 years	
Decomposition apparatus for sample decomposition incl. decomposition tube, reducing adaptor and condensor	91629	_	_	
Sludge analysis				
■ Reagent set NANOCOLOR® sludge: aqua regia digestion of sludge- and soil samples in the heating block	91850	10	3 years	
Starter set combination of necessary accessories for sludge analysis (without reagents, photometer, heating block) incl. instructions	91610	_	-	
GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed info	rmation please	see the SDS.		

NANOCOLOR® accessories

Everything from one hand

An indicator for the quality of an analytical system is its completeness. Therefore, accessories for sample drawing, preparation, and conservation as well as for decomposition, extraction and filtration are part of the NANOCOLOR® system.

Getting all these components from one hand allows a smooth work flow leading to optimal results.

Ordering information

Description	REF	Content	Number of tests	Shelf life	GHS
General accessories					
Volumetric flask 10 mL for reduced analytical preparations	91642	2 pieces			
Volumetric flask 25 mL with NS 10/19 and PE stopper for analytical preparations	91661	2 pieces			
■ Volumetric flask 100 mL with NS 12/21 and PE stopper	91683	2 pieces			
■ Erlenmeyer flask 50 mL	916212	1 piece			
Erlenmeyer flask 100 mL	91638	1 piece			
Measuring cylinder 50 mL	91684	1 piece			
Bulb for filling 20 mL pipettes	91665	1 piece			
Glass rod 30 cm	91639	1 piece			
Tweezers for picking of NANOFIX capsules	916114	1 piece			
Plastic wash bottle 500 mL with spraying attachment	91689	1 piece			
Magnetic stirring unit	970115	1 piece			
■ Mini-magnet for stirring (30 x 6 mm)	916211	1 piece			
■ Timer with digital display and acoustic signal (up to 99:59 min)	91696	1 piece			
Porcelain mortar 90 mm Ø with pestle	91688	1 piece			
■ Holder for 15 round glass tubes and 2 tubes for sample digestion	91623	1 piece			
Safety kit, consists of safety glasses, gloves and rubber apron	91690	1 piece			
Adhesive tape, glass fiber reinforced, for closing the shipping boxes for hazardous goods	91620	1 roll, 50 m			
■ Glass funnel 60 mm Ø	91681	1 piece			
■ Glass funnel 80 mm Ø	91682	1 piece			
Filter circles MN 1670, 11 cm Ø	470011	100 pieces			
■ Filter circles MN 640 d, 15 cm Ø	205015	100 pieces			
Membrane filtration					
■ Membrane filtration kit: 2 syringes 20 mL, 25 CHROMAFIL® membrane filters 0.45 µm	91650	1 set			
■ CHROMAFIL® membrane filters 0.45 µm	91652	50 pieces			
■ Membrane filtration kit: 2 syringes 20 mL, 25 CHROMAFIL® membrane filters 1.2 µm	916511	1 set			
■ CHROMAFIL® membrane filters 1.2 µm	916513	50 pieces			
■ Membrane filtration kit: 2 syringes 20 mL, 25 CHROMAFIL® membrane filters GF/PET 0.45 µm	91601	1 set			
■ CHROMAFIL® membrane filters GF / PET 0.45 µm	91602	50 pieces			
Pipetting					
■ Piston pipette 200 µL	91672	1 piece			
■ Plastic tips transparent for piston pipettes 5–200 µL	916915	100 pieces			
■ Piston pipette 500 µL	91653	1 piece			
■ Plastic tips transparent for piston pipettes 100–1000 µL	91676	100 pieces			
■ Piston pipette 1.0 mL	91671	1 piece			
■ Plastic tips transparent for piston pipettes 100–1000 µL	91676	100 pieces			

NANOCOLOR® accessories

Description	REF	Content	Number of tests	Shelf life	GHS
■ Piston pipette 2.0 mL	916917	1 piece			
■ Plastic tips transparent for piston pipettes 1.0–5.0 mL	916916	100 pieces			
■ Digital piston pipette 5–50 µL, adjustable, with tip ejector	91658	1 piece			
■ Digital piston pipette 50–200 µL, adjustable, with tip ejector	916914	1 piece			
■ Plastic tips transparent for piston pipettes 5–50 µL and 50–200 µL	916915	100 pieces			
■ Digital piston pipette 100–1000 µL, adjustable, with tip ejector	91677	1 piece			
■ Plastic tips transparent for piston pipettes 100–1000 µL	91676	100 pieces			
■ Digital piston pipette 1.0–5.0 mL, adjustable, with tip ejector	916909	1 piece			
■ Plastic tips transparent for piston pipettes 1.0–5.0 mL	916916	100 pieces			
■ Pipette stand for 6 piston pipettes	91679	1 piece			
Extraction					
■ 100 mL separation funnel with NS glass tap and PE stopper for extraction methods	91664	2 pieces			
■ Stand with clamps and bosses for 4 separation funnels, height 70 cm	91695	1 piece			
AOX					
 Supplement kit for AOX for the sensitive AOX range (0.01–0.30 mg/L AOX) and for higher COD values (required above 50 mg/L COD) 	918072	2 x 4 g	20	1 year	•
■ Chloride detection kit AOX for samples with high chloride contents	918073	10 mL		1 year	
Starter set for AOX, consists of tweezers, funnel, cartridge adaptor, beaker, glass rods, 1 L bottle and syringes	916111	1 set			
■ Pump set for AOX, consists of centrifugal pump, connecting tubes, graduated 1 L reservoir with tap and stand with clamps and bosses	916115	1 set			
■ NANOCOLOR® cartridge adapter for AOX pump-set	916113	1 piece			
BOD₅					
■ BOD ₅ nutrient mixture (without <i>N</i> -allylthiourea [NATU])	918994	20 cuvettes	20–80	2 years	
■ BOD ₅ nutrient mixture PLUS (with N-allylthiourea [NATU])	918995	20 cuvettes	20–80	2 years	
■ BOD ₅ accessories set, consists of electric air pump, 10 L PE container, 2 aerating bricks, 1 L laboratory bottle, 4 Winkler bottles	916918	1 set			
■ BOD ₅ -TT accessories set, consists of electric air pump, 2 aerating bricks, 1 L PE container, 2 reaction vessels (40 mL)	916925	1 set			
■ Reaction vessels for BOD ₅ -TT	916926	10 pieces			
Oxygen bottles according to Winkler (250–300 mL)	916919	4 pieces			
■ Aerating bricks for BOD ₅ determination	916920	4 pieces			
COD					
■ Chloride complexing agent for chloride concentration of 1000–7000 mg/L Cl⁻	918911	100 mL	100	1.5 years	
■ Cartridges for chloride elimination of up to 2000 mg/L chloride per cartridge	963911	10 pieces	10	1 year (2–8 °C)	•
■ COD- and TOC-free water	918993	50 mL		1 year	
■ Safety bottle for shaking COD tubes	91637	1 piece			
Hydrocarbons					
■ Extraction of HC from water	918571	1 box	20	1.5 years	
■ Extraction of HC from soil	918572	1 box	20	1.5 years	
Separation funnel 500 mL with PTFE tap and glass stopper	91608	2 pieces			
■ CHROMABOND® column 45 mL with 4 g aluminum oxide ALOX N for purification of water and soil extracts by solid phase extraction	730250	20 pieces	20	3 years	
Syringe adaptor for CHROMABOND® columns 45 mL	91603	2 pieces			
■ Plastic syringes 50 mL	91609	10 pieces			
GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. Fo		· ·	SDS		

NANOCOLOR®

NANOCOLOR® accessories

Description	REF	Content	Number of tests	Shelf life	GHS
Stop valve for pipette tips for low-viscosity liquids	91621	100 pieces			
■ Threaded union for coupling the sample tube with the COD tube	91604	2 pieces			
 Soxhlet apparatus 30 mL, with 100 mL round flask with flat bottom and condenser (3 parts); additionally a heater is required 	91605	1 set			
Extraction thimbles MN 64523 mm Ø x 100 mm	645008	25 pieces			
■ Measuring flask 50 mL with PE stopper	91606	2 pieces			
TOC					
NANOCOLOR® TIC-Ex for removal of TIC, incl. cuvette holder, power supply 100-240 V, 50/60 Hz, 9 V + 3 adapters, manual	916993	1 piece			
■ Manual for NANOCOLOR® TIC-Ex	916994	1 piece			
■ Cuvette holder for NANOCOLOR® TIC-Ex	916995	1 piece			
■ Power supply for QUANTOFIX® Relax and NANOCOLOR® TIC-Ex	930995	1 piece			
■ Pipette tips for NANOCOLOR® TIC-Ex	916997	20 pieces			
■ Pipette tips for NANOCOLOR® TIC-Ex	916998	200 pieces			
■ Cover for NANOCOLOR® VIS for TOC determination	916996	1 piece			
■ Holder for 15 round glass tubes and 2 tubes	91623	1 piece			
Special chemicals for elimination of interferences					
■ Distilled water	918932	1 L		1 year	
■ Silica-free water	918912	1 L		1 year	
■ Isobutyl methyl ketone (MIBK) for phenol test 0-74	918929	100 mL			
Reagents for sample preparation					
■ Carrez solutions 1 + 2, for nitrite in cooling lubricants, sewage water from landfills etc.	918937	2 x 30 mL	30	2 years	
 Removal of interfering calcium for determinations of copper, nickel and zinc by lime precipita- tion clarification 	918939	100 g	20	2.5 years	
Amidosulfuric acid for nitrite elimination	918973	25 g		2 years	
■ Ammonium compensation reagent for tube test NANOCOLOR® Potassium 50	918045	30 mL	100	2 years	
GHS: Globally harmonized system: This product contains harmful substances which must be specially labeled as hazardous. Fo	r detailed inform	ation please see the	SDS.		

High quality filter papers MN filter papers since 1911

German quality

- More than 7000 different filtration products
- Reliable results
- Flexible and custom-made products
- Special filter papers for sewage plants according to DIN EN 872

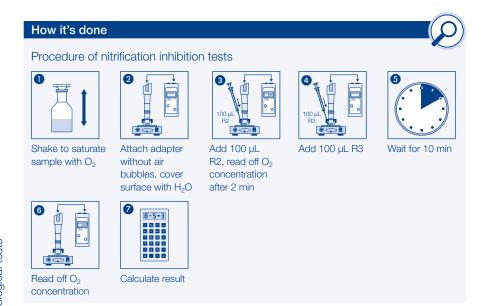
Oml

80

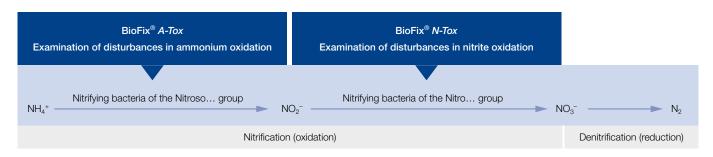
Microbiological tests

BioFix [®]	
Nitrification inhibition tests	118
Luminous bacteria toxicity tests	120

Nitrification inhibition tests


Easy control of nitrification

The nitrification inhibition tests BioFix® A-Tox/N-Tox provide an easy method to control the biology on sewage plants. These BioFix® nitrification inhibition tests can be used to measure the inhibition of the nitrification in all types of water. Interferences by single substances as well as substance mixtures are detected.


Nitrification is an important step during waste water purification in order to keep the concentration of ammonium ions in the effluents of the sewage plant as low as possible. Additionally, nitrification is the prerequisite for denitrification for complete nitrogen elimination. This process is required for waste water treatment in many countries.

BioFix® nitrification inhibition tests allow the investigation of the first and second step of nitrification separately as well as undifferentiated. With BioFix® A-Tox one tests, whether the first step of the nitrification, the oxidation of ammonium, is inhibited by sample components. BioFix® N-Tox is used to analyze the second step of the nitrification, the oxidation of nitrite.

Whether the nitrification is inhibited by sample components in general can be determined with the undifferentiated screening test BioFix® A/N-Tox.

Rapid

- Test only takes 10 min
- Pre-dosed nitrificants
- Ready-to-use reagents

Easy

- Considerably less effort necessary compared to DIN-procedure
- Evaluation without inconvenient equipment
- Dispose of used reagents without constraints

Safe

- High sensitivity
- Very good reproducibility due to defined bacteria strains
- Differentiated analysis of both nitrification steps possible

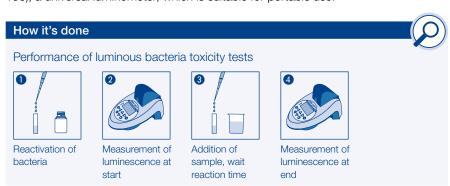
Ordering information

Test	REF	Number of tests	Shelf life
■ BioFix® A-Tox for evaluation of the biological conversion of ammonium to nitrite (1st step of nitrification)	970001	10–19	1 year (2-8 °C)
■ BioFix® <i>N-Tox</i> for evaluation of the biological conversion of nitrite to nitrate (2 nd step of nitrification)	970002	10–19	1 year (2-8 °C)
■ BioFix® nitrification inhibition test, reagent <i>A-Tox</i> R2, enriched nitrificants for oxidation of ammonia	970903	10 x 2 mL	1 year (2-8 °C)
■ BioFix® nitrification inhibition test, reagent <i>N-Tox</i> R2, enriched nitrificants for oxidation of nitrite	970902	10 x 2 mL	1 year (2-8 °C)

Accessories

Description	REF	Content
■ Starter kit for BioFix® nitrification inhibition tests: 1 electrode adaptor which holds the oxygen electrode, 3 x 2 seals for the electrode adaptor, 2 mini-magnets, 1 micro syringe 100 µL, 1 filtration syringe 20 mL	970101	1 set
■ CHROMAFIL® membrane filters, 0.45 µm	91652	50 pieces
■ Electrode adaptor	970111	1 piece
■ Special adaptor 12 mm for oxygen electrodes with membrane heads type WP3-ST	970116	1 piece
Seals for electrode adaptor	970112	5 x 2 pieces
■ Reaction vessels	970113	50 pieces
■ Magnetic stirring unit without heater	970115	1 piece
■ Mini-magnets	970114	5 pieces
■ Stand, complete with 4 clamps and bosses	91695	1 piece

Luminous bacteria toxicity tests


Tests for bio toxicity in accordance to ISO 11348

BioFix® luminous bacteria tests use bio luminescence to determine bio toxicity. In contrast to chemical single parameter analysis, luminous bacteria tests allow an evaluation of the over-all-toxicity of a sample. The test principle is based on the static measurement of the bio luminescence of luminous bacteria (strain *Vibrio fischeri* NRRL B-11177), where a defined sample volume is mixed with a suspension of bacteria. Subsequently, the inhibition of the luminescence in the sample is determined in comparison to an uninhibited control solution.

The tests are easy to use and the procedure is normed (ISO 11348). This guarantees safe and reliable results with low effort. BioFix® luminous bacteria tests are available in various, application specific packing sizes. The applications for these tests reach from the analysis of ground, surface, seepage and all types of waste water to the analysis at waste disposal sites. Furthermore they allow the determination of the bio toxicity of solid material e.g. soil samples, sediments and solid waste.

BioFix[®] luminous bacteria tests are available with liquid-dried (according to ISO 11348-2) and freeze-dried bacteria (according to ISO 11348-3). Used reagents and bacteria can be disposed of easily by washing them down the drain.

The evaluation of the toxicity analysis is performed with the BioFix® Lumi-10 (see page 156), a universal luminometer, which is suitable for portable use.

Ordering information

Test	REF	Number of tubes	Number of tests	Shelf life	Liquid- dried	Freeze- dried
Lumi luminous bacteria, with reconstitution solution	945002	20	up to 2000	2 years		
Lumi luminous bacteria, with reconstitution solution	945003	10	up to 1000	2 years		
Lumi luminous bacteria, with medium	945006	20	up to 400	2 years		
Lumi luminous bacteria, with medium	945007	10	up to 200	2 years		
Lumi multi-shot, with reactivation and control solution	945022	10	up to 100	2 years		
Lumi single-shot, with reactivation and control solution	945021	20	up to 40	2 years		
■ Lumi luminous bacteria, with reactivation and NaCl solution	945023	10	up to 200	2 years		
■ Lumi luminous bacteria, with reactivation and NaCl solution	945024	20	up to 400	2 years	-	
Lumi luminous bacteria, with reactivation and NaCl solution	945025	10	up to 100	2 years	-	

All freeze/liquid-dried BioFix® luminous bacteria are also suited for luminometers of other manufacturers (e.g. LUMIStox, LUMISmini of HACH). All luminous bacteria tests by MACHEREY-NAGEL need to be stored at -20 ± 2 °C.

Luminous bacteria toxicity tests

Accessories

Description	REF	Content
■ BioFix® Lumi diluent	945601	1 L
■ BioFix® Lumi osmotic adjusting solution	945602	50 mL
■ BioFix® Lumi reconstitution solution for freeze-dried luminous bacteria	945603	1 L
■ BioFix® Lumi diluent for solid phase test	945604	1 L
■ BioFix® Lumi medium for freeze-dried luminous bacteria in accordance with DIN EN ISO 11348-3	945608	1 L
Absorbance color correction cuvettes with 100 aspirators	940006	4 pieces
■ Glass cuvettes, 50 x 12 mm, plain bottom, 12 mm Ø	916912	690 pieces
■ Rack for glass cuvettes 12 mm Ø, 5 x 10 positions	945013	1 piece

Photometers	
NANOCOLOR® VIS II and UV/vis II	124
NANOCOLOR® Advance	128
PF-12 ^{Plus}	132
PF-3	134
NANOCOLOR® TIC-Ex	138
NANOCOLOR® FP-200	139
NANOCONTROL	140
Accessories for photometers	141
Heating blocks	
NANOCOLOR® VARIO 4, VARIO C2 and VARIO C2 M	
NANOCOLOR® VARIO Mini	
NANOCOLOR® VARIO HC	
NANOCOLOR® T-Set and USB T-Set	
Accessories for heating blocks	152
Reflectometer QUANTOFIX® Relax	154
Luminometer	
BioFix® Lumi-10.	156

NANOCOLOR® VIS II and UV/VIS II

Spectrophotometers for high-precision analysis

The NANOCOLOR® VIS II and NANOCOLOR® UV/vis II are high-precision measurement instruments applicable in all areas of water and wastewater analysis. MACHEREY-NAGEL revolutionizes the daily laboratory work with these two new spectrophotometers, combining premium high-tech instruments with outstanding usability. With their intuitive, icon-based menu guidance, these innovative photometers can be used like a smartphone or tablet. The clearly arranged, high-resolution touch screen display makes your daily measurement routine a real pleasure.

Powerful technology

The new NANOCOLOR® spectrophotometers impress with high-class technology and optics. The spectral bandwidth of the NANOCOLOR® UV/vis II of < 2 nm allows high-precision measurements. The optical set-up and the clever technique of both devices enable measurements without protective cover; a big advantage for smooth lab processes. With a 2D barcode scanner and cuvette recognition, all steps from measuring over displaying to storing of the result are part of a fully automated sequence.

The allrounders for all requirements

As comprehensive spectrophotometers, the NANOCOLOR® VIS II and UV/VIS II, meet all requirements of your daily laboratory work. They come with well-known barcode technology for a rapid measurement of NANOCOLOR® tube tests. In addition, they offer extensive color measurement possibilities and real-time scan recording. Next the nephelometric turbidity measurement and the turbidity measurement in transmitted light, the preprogrammed MEBAK methods allow a comprehensive brewery analysis. The simple menu navigation and the icon-based pictogram instructions for the performance of cuvette tests, reduce the complexity of the daily laboratory work. The clear result screen enables an easy assignment of additional sample information and measurement results. The systematic menu guidance for the calibration of special methods allows even inexperienced users to program methods for user specific applications.

How it's done In four steps to inspection equipment monitoring

Good to know

Turbidity - a source of error: Turbidity is often underestimated since it is not always visually recognizable. During each measurement, the MACHEREY- NAGEL spectrophotometers automatically measure the turbidity and actively warn the user in case of an interfering turbidity.

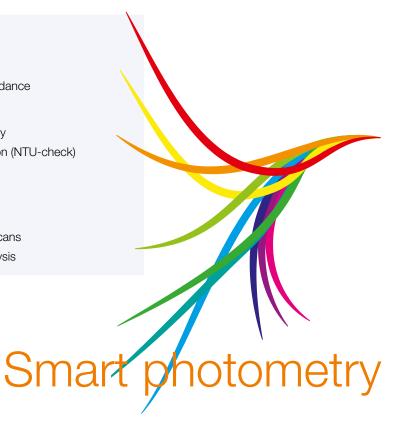
Good to know

An overview of all NANOCOLOR® test kits available on the NANOCOLOR® UV/vis II and VIS II is given from page 88.

Good to know

The test equipment offers the monitoring of the entire analysis system and also extensive options for verifying the device functionality. The user can perform the test himself and save costs, an external device test is no longer needed.

Smart


- Outstanding usability due to touch screen
- 10.1" HD display for a clear overview
- Unique user experience due to icon based menu guidance

Precise

- High quality optics with reference detector technology
- Safe results due to automatic turbidity control function (NTU-check)
- Safeguarding of results via integrated IQC menu

Impressively versatile

- Future-proof interfaces
- Color measurements, turbidity measurements and scans
- Applicable in all fields of water and waste water analysis

NANOCOLOR® VIS II and UV/VIS II

The next audit will be a breeze

Quality is of high importance for MACHEREY-NAGEL. Therefore, our new spectrophotometers are equipped with extensive quality control features. Besides the integrated, f.o.c. inspection equipment monitoring tools, the devices offer a variety of quality control functions for e.g. standard measurements, multiple determinations and dilution series. IQC cards are generated directly in the device and can be printed or exported for documentation purposes. Therefore, NANOCOLOR® VIS II and UV/vis II offer easy to use control options, allowing an efficient and accurate internal quality control perfectly integrated in your daily work.

Striking interface options for smart connectivity

The connection of measuring devices to laboratory information systems (LIMS) plays a more and more important role in many industries. Therefore, the NANOCOLOR® VIS II and NANOCOLOR® UV/vis II are equipped with all important interfaces (LAN, RS232, USB) for the connection to laboratory information systems. In addition, the integrated LIMS configurator allows a customized adaptation for many kinds of data for transfer. An easily accessible USB port increases the comfort of data exchange with mass storage media or the usage of a barcode reader, scanner or printer.

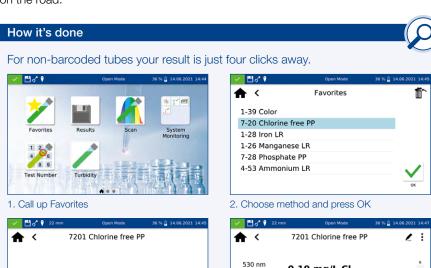
Ordering information

Description	REF
Spectrophotometer NANOCOLOR® VIS II incl. manual (quick start guide), touch pen, protective covering, power cable with country adapters, USB cable, USB stick, calibration cuvette, cleaning cloth and certificate in a cardboard box.	919650.1
Spectrophotometer NANOCOLOR® UV/vis II incl. manual (quick start guide), touch pen, protective covering, power cable, USB cable, USB stick, calibration cuvette, cleaning cloth and certificate in a cardboard box.	919600.1

	NANOCOLOR® VIS II	NANOCOLOR® uv/vis II
Туре	Spectrophotometer with reference detector technol	ogy (RDT)
Light source	Halogen lamp	Halogen lamp (visible range) Deuterium lamp (UV range)
Optics	Monochromator Insensitive to external light for fast measurements w measurements and measurements in the UV-range	vithout cuvette slot cover; Cuvette slot must be covered for color
Wavelength range	320 nm-1100 nm	190 nm-1100 nm
Wavelength accuracy	± 1 nm	
Wavelength resolution	0.1 nm	
Wavelength reproducibility	< 0.5 nm	
Wavelength calibration	Automatic	
Wavelength selection	Automatic, barcode, manual	
Scan speed	1 complete scan in less than 1 min	
Spectral bandwidth	< 4 nm	< 2 nm
Photometric range	± 3.0 A in wavelength range 340 nm-900 nm	± 3.0 A in wavelength range 200 nm-900 nm
Photometric accuracy	0.005 A at 0.0 A-0.5 A; 1 % at 0.5 A-2.0 A	
Photometric linearity	< 0.5 % at ≤ 2 A; ≤ 1 % at > 2 A	
Stray light	< 0.1 %	< 0.05 %
Measuring modes	More than 200 preprogrammed tests and special methods, 100 optionally programmable methods, absorbance, transmittance, factor, kinetics, 2-point calibration, scan, nephelometric turbidity measurement	
Compatible test kits	NANOCOLOR® tube tests (see page 88) and NANO tests (see page 102), VISOCOLOR® Powder Pillow VIS II: NANOCOLOR® robot tests (see page 96)	OCOLOR® standard tests (see page 98), NANOCOLOR® ECO tests (see page 82)
Turbidity measurement	Nephelometric turbidity measurement at 860 nm, 0	.1 NTU-1000 NTU
	Accuracy: < 1 NTU: +/- 0,1 NTU, 4 NTU: 3-5 NTU,	100 NTU: 90–110 NTU, 400 NTU: 360–440 NTU
Internal quality control	With NANOCONTROL NANOCHECK 2.0 and integ	rated Holmium oxide filter
Cuvette slot	Test tubes 16 mm OD Rectangular cuvettes 2 mm, 10 mm, 20 mm, 40 mm	m, 50 mm
Data memory	16 GB Micro SDHC card, 5000 measured data sets	s, 100 scans or color measurements, GLP-conform
Display	10.1" LED backlit HD display, anti-reflective cover of	glass with projected capacitive touch screen (PCAP)
Operation	Test selection via barcode technology, icon-based menu guidance, touch screen	
Languages	DE/EN/FR/ES/PT/PL/HU/NL/CZ/RO/IT	
Interfaces	LAN, 2 x USB (Host), 1 x USB (Function) and RS23	2
Update	Free of charge via USB stick	
Operating range	10 °C-40 °C, up to 80 % relative humidity (non-con	densing)
Power supply	Input: 110 V-240 V, Output: 12 V 3A	110 V-240 V, ~50/60 Hz
Dimensions	360 mm x 400 mm x 110 mm	400 mm x 440 mm x 170 mm
Weight	4.0 kg	6.5 kg
Warranty	2 years	
CE	CE certified	

NANOCOLOR® Advance

Smart into the future


The spectrophotometer NANOCOLOR® Advance combines the most important features of our portable compact photometer PF-12 Plus and our high-precision spectrophotometer NANOCOLOR® VIS II. It provides precise and reliable measurement results in the daily laboratory routine and can also be used mobile due to its rechargeable battery. With its wavelength spectrum of 340-800 nm it allows the measurement of all photometrically evaluable test kits from MACHEREY-NAGEL. The NANOCOLOR® Advance can therefore be used universally in the entire spectrum of water and wastewater analysis.

Leave nothing to chance

The NANOCOLOR® Advance offers the user an automatic detection of interfering turbidity (NTU-Check). With an additional 860 nm LED, the device determines the nephelometric turbidity during each measurement of a tube test and warns the user of incorrect results. This option helps to avoid measuring errors and sets the basis for reliable measuring results.

Experience flexibility

The NANOCOLOR® Advance is the first photometer from MACHEREY-NAGEL with a 24 mm cuvette slot and thus extends the options for all areas of water analysis. Besides the NANOCOLOR® tube tests and standard tests, the test kits from our VISOCOLOR® ECO and VISOCOLOR® Powder Pillows range can also be evaluated. The comprehensive and easy-to-understand menu for creating customer-specific methods makes the device an all-rounder in laboratory analysis and measurements on the road.

Good to know

The NANOCOLOR® Advance has passed the vibration test according to Military Standard 810H only 514.8 CAT 4 and fulfills the requirements of protection class IP 67. This underlines the robustness of the device and confirms its suitability for mobile analysis.

Good to know

Universal cuvette slot

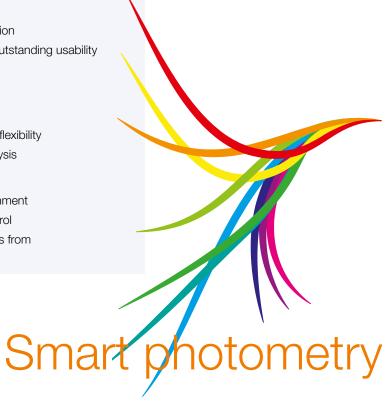
10, 20, 50 mm standard tests as well as 16 and 24 mm tube tests can be used with only two adapters.

Stable and with a large opening, the new 24 mm tube tests are ideally suited for the evaluation of our VISOCOLOR® Powder Pillows (see page 82)

Please insert solution.

4. Read result

Smart


- 2D barcode recognition for automatic method selection
- Touch screen and icon-based menu navigation for outstanding usability
- NTU check for detection of interfering turbidities

Mobile

- Water proof according to IP 67
- Robust design and built-in battery ensure a limitless flexibility
- Applicable in all fields of water and waste water analysis

Versatile

- High quality optics for perfect results in every environment
- Comprehensive options for a full internal quality control
- Compatible with all photometrically evaluable test kits from MACHEREY-NAGEL

NANOCOLOR® Advance

Versatile in use

The NANOCOLOR® Advance allows a simple and reliable routine analysis by fully automatic cell recognition via the integrated 2D barcode scanner. The fast selection of the test method and the correct wavelength allows almost contactless operation.

The data export is done directly via the integrated interfaces. Be prepared for future requirements. You do not need any additional accessories for the data export. Connect USB stick - export data - open on computer.

Ordering information

Description	REF
Spectrophotometer NANOCOLOR® Advance incl. manual (quick start guide), protective cover, power supply unit with country specific adapters, USB stick, calibration cuvette, certificate and cleaning cloth in cardboard box	919750

recrimear data	
NANOCOLOR® Advance	
Туре	Spectrophotometer with Reference Detector Technology (RDT)
Light source	Halogen lamp
Optical system	Single beam photometer with grating monochromator
Wavelength range	340 nm–800 nm
Wavelength accuracy	± 2 nm
Wavelength resolution	1 nm
Wavelength reproducibility	± 0.1 nm
Wavelength calibration	Automatically
Wavelength selection	Automatically, Barcode, manually
Scan speed	1 complete Scan < 3 min
Spectral bandwidth:	< 4 nm
Photometric range	+/- 3.0 A in the range 340–800 nm
Photometric accuracy	0.003 A at 0.0-0.5 A; 1 % at 0.5-2.0 A
Photometric linearity	< 0.5 % at 0.5–2.0 A; ≤ 1 % at > 2 A with neutral glass filters at 546 nm
Scattered light:	< 0.5 %
Measurment modes	Over 200 preprogrammed tests and special methods; 100 fully programmable methods; absorbance; transmission; factor; kinetics; 2-point calibration; scan; nephelometric turbidity measurement
Compatible test kits	NANOCOLOR® tube tests (see page 88)
	NANOCOLOR® standard tests (see page 98)
	NANOCOLOR® ECO tests (see page 102)
	VISOCOLOR® Powder Pillow tests (see page 82) VISOCOLOR® ECO tests (see page 76)
Turkidit usaasa usaasa at	
Turbidity measurement	Nephelometric turbidity measurement (based on ISO 7027, 16 mm and 24 mm) 1–1000 NTU Accuracy:
	1 NTU: 0–2 NTU
	4 NTU: 3–5 NTU
	100 NTU: 95–105 NTU
	400 NTU: 380–420 NTU
Cuvette slot	Tube test 16 mm and 24 mm OD
	Standard test 10 mm, 20 mm, 40 mm and 50 mm
Data memory	1000 Measured values, 1000 IQC data, 100 scans; GLP-conform
Display	Backlit colored 5" display with touch screen
Operation	Barcode technology; icon-based display menu navigation; capacitive touch screen
Languages	DE/EN/FR/ES/NL/IT/HU/PL/CZ/PT-Br/TK/BG/RO/DK
External light	Insensitive; open cuvette slot
Interfaces	LAN (CAT 6; only use shielded cables with a maximum length of 20 m) 2 x USB (Host), 1 x USB (Function)
Internal quality control	With NANOCONTROL NANOCHECK 2.0 and integrated Holmium oxide filter
Protection class	IP 67
Update	Free of charge via USB stick
Operating range	10 °C-40 °C, up to 80 % relative humidity (non-condensing)
Power supply	100 V-240 V~, 50/60 Hz/6 V, 3.2 Ah via built-in battery including mains power supply
Dimensions	325 x 280 x 130 mm (L x W x H)
Weight	3.8 kg
Warranty	2 years
CE	CE certified

Compact photometer for mobile water analysis

The photometer PF-12^{Plus} is a device tailored for the mobile water analysis. The iconbased menu guidance and clear taskbar make the PF-12^{Plus} an easy to use photometer for all fields of water and wastewater analysis without the need for extensive training. The device comes in a rugged case equipped with useful accessories and is therefore particularly popular with users for the direct analysis at the point of sampling.

Easy implementation

Measurement results are obtained very quickly with the PF-12 Plus, thanks to its simple operation. Equipped with more than 100 preprogrammed methods, it is the ideal companion for analysis on the road. The PF-12 Plus comes with easy to understand pictogram instructions in a practical manual for the evaluation of VISOCOLOR® ECO test kits.

Free programming

In addition to the preprogrammed methods, the PF-12 Plus offers the possibility to create up to 50 special methods for customized applications. Equations up to 4th degree and logarithmic functions can be programmed systematically.

Turbidity measurements

With its especially positioned 860 nm LED the PF-12 enables nephelometric turbidity measurements (NTU) in the range of 1-1000 NTU. Therefore, disturbing turbidities will be detected reliably in parallel to a measurement of tube tests - a huge PLUS on measurement safety. Furthermore, the PF-12 Plus offers the possibility to accurately determine the turbidity in transmitted light from 4-350 FAU.

How it's done Photometric determination with the PF-12 Plus

Prepare sample Measure

Read result

Good to know

Manifold case solutions are available for the PF-12^{Plus}, which can be individually equipped with test kits. An overview of the available cases is given on

Good to know

An overview of the VISOCOLOR® ECO tests, VISOCOLOR® Powder Pillows, NANOCOLOR® ECO and NANOCOLOR® tubes compatible with the $PF-12^{Plus}$ is given on page 76, page 82, page102 and page 88.

Good to know

Turbidity - a source of error: Turbidity is often underestimated since it is not always visually recognizable. During each measurement, the PF-12 $^{\!\!Plus}$ automatically measures the turbidity in the tube and warns the user in case of an interfering turbidity.

Ordering information

Description	REF
■ Compact photometer PF-12 ^{Plus} for evaluation of VISOCOLOR® ECO tests, VISOCOLOR® Powder Pillows, NANOCOLOR® ECO and NANOCOLOR® tube tests, incl. software DVD, manual, 4 batteries, 4 empty test tubes, funnel, beaker, syringe, USB cable, calibration cuvette, cleaning cloth and certificate in rugged case	919250

Safe

- Easy handling for precise results
- GLP-conform storage of all measurement results
- Comfortable data export and data backup options

Mobile

- Flexible power supply via batteries or accu-pack
- Backlit graphic display also for critical lighting conditions
- Robust and waterproof according to IP 68

Versatile

- Compatible with NANOCOLOR® and VISOCOLOR® test kits
- NTU-measurement and NTU-check for detection of interfering turbidities
- Applicable in all fields of water and waste water analysis

PF-12 ^{Plus}	
Туре	Filter photometer with microprocessor control, self-test and auto-calibration
Optics	Automatic filter wheel with 7 interference filters; Insensitive to external light for fast measurements without cuvette slot cover
Wavelengths	345 nm/436 nm/470 nm/540 nm/585 nm/620 nm/690 nm plus 1 compartment for an additional filter; 860 nm LED for NTU measurement
Wavelength accuracy	± 2 nm, bandwidth at half transmission 10 nm-12 nm
Light source	Xenon lamp
Detector	Silicon-photodiode
Blank value	Automatic
Measuring modes	Over 100 preprogrammed tests and special methods, absorbance, transmission, factor, standard, nephelometric turbidity measure ment, 50 freely programmable methods
Turbidity measurement	Nephelometric turbidity measurement (based on ISO 7027, 16 mm) 1–1000 NTU
	Accuracy: 1 NTU: 0–1 NTU, 4 NTU: 3–5 NTU, 100 NTU: 90–110 NTU, 400 NTU: 360–440 NT
Compatible test kits	VISOCOLOR® ECO tests (see page 76), VISOCOLOR® Powder Pillow tests (see page 82), NANOCOLOR® ECO tests (see page 102), NANOCOLOR® tube tests (see page 88)
Photometric range	± 3 A
Photometric accuracy	± 1 %
Stability	< 0.002 A/h
Cuvette slot	Tubes 16 mm OD
Data memory	1000 results, GLP conform
Display	Backlit graphic display, 128 x 64 pixels. All important data at a glance: Result with unit, date, time, sample number, sample location dilution, measuring range control bar
Auto-off function	Inactive or automatic shutdown after 5 min, 10 min, 15 min, 20 min, 60 min
Quality control	With NANOCONTROL NANOCHECK 2.0
Operation	Self-explanatory menu guidance, foil keypad, test selection via parameter lists
Interface	USB 2.0
Languages	DE/EN/FR/ES/IT/NL/HU/PL/PT/CZ/ID/SL/TR/MY
Update	Free of charge via Internet / PC
Operating range	10 °C-40 °C, up to 80 % relative humidity (non-condensing)
Power supply	4 AA batteries, rechargeable batteries, USB interface; optional internal accu-pack
Housing	Shock-resistantaccording to MIL-STD 810C (test specification 514.2); Waterproof and dustproof according IP 68
Dimensions	215 mm x 100 mm x 65 mm
Weight	0.7 kg
Warranty	2 years
CE	CE certified

Compact photometer for mobile water analysis

The compact photometer PF-3 is the smallest member of the MACHEREY-NAGEL photometer family. The device completes our product portfolio and perfectly fits our tradition of reliability, user friendliness and innovation. The instrument comes in multiple versions, equipped with three LEDs and interference filters, designed to meet the analysis requirements of specific applications. Together with the approved VISOCOLOR® ECO test kits, VISOCOLOR® Powder Pillows and high quality NANOCOLOR® tube tests from MACHEREY-NAGEL, the PF-3 is perfectly suited for mobile analysis directly at the place of sampling. Optionally, the device comes in a practical case with pre-equipped test kits, in a cardboard box or in an empty case for the individual combination with our VISOCOLOR® ECO test kits.

Small, strong, smart

The handy and compact design makes this lightweight the ideal companion for mobile analysis. Its simple operation allows measurements within seconds. Besides the measurement accuracy, simplicity and user friendliness are key features of all MACHEREY-NAGEL devices. The interaction of context-sensitive icons and only four buttons guarantees a smart, clear and language-independent operation.

Fast and reliable results

The centerpiece of the PF-3 is its high-quality optic with the specially selected LEDs and corresponding interference filters. The unique "open slot" technology allows measurements without cuvette slot cover, thus emphasizing the high technical standard of the instrument. This yields into a simple and quick operation for the user, together with highly reliable results. MACHEREY-NAGEL provides free PC software, for an even more comfortable operation. The software makes data management convenient, simple and efficient. Additionally it guarantees a forgery-proof data management.

Be prepared

The variable power supply is of particular convenience for the user and enables reliable measurements in all situations. Besides batteries and an accu-pack, the device can also be powered directly via an USB cable or a power adaptor.

How it's done

Prepare sample

Good to know

Manifold case solutions are available for the PF-3, which can be individually equipped with test kits. An overview of the available cases is given on page 164.

Good to know

An overview of VISOCOLOR® ECO tests. VISOCOLOR® Powder Pillows and NANOCOLOR® tube tests compatible with the PF-3 is given on page 76, page 82 and page 88.

Read result

Simple

- Intuitive operation with only four keys
- Flat menu structure
- Bright display for safe readings

Robust

- Glass fiber reinforced housing for extreme durability
- Water- and dustproof according to IP 68
- Shock-resistant optics

Flexible

- Various case solutions including reagents
- Additional parameters available f.o.c.
- Compatible with VISOCOLOR® ECO tests, VISOCOLOR® Powder Pillows and NANOCOLOR® tests

Ordering information

Description	REF
Compact photometer PF-3 Pool (Cl ₂ , pH, Cya, TA), in a cardboard box for evaluation of VISOCOLOR® ECO tests, VISOCOLOR® Powder Pillows and NANOCOLOR® tube tests incl. manual, batteries and certificate	919340
Compact photometer PF-3 Soil (NH ₄ , K, NO ₃ , PO ₄), in a cardboard box for evaluation of VISOCOLOR® ECO tests, VISOCOLOR® Powder Pillows and NANOCOLOR® tube tests incl. manual, batteries and certificate	919341
Compact photometer PF-3 COD (COD), in a cardboard box for evaluation of NANOCOLOR® tube tests incl. manual, batteries and certificate	919342
Compact photometer PF-3 Drinking Water (Cl ₂ , pH, F, Fe, ClO ₂), in a cardboard box for evaluation of VISOCOLOR® ECO tests, VISOCOLOR® Powder Pillows and NANOCOLOR® tube tests incl. manual, batteries and certificate	919343
Compact photometer PF-3 Fish (NH ₄ , Cl ₂ , pH, Fe, SiO ₂ , PO ₄ , NO ₃ , NO ₂ , O ₂ , Cu), in a cardboard box for evaluation of VISOCOLOR® ECO tests, VISOCOLOR® Powder Pillows and NANOCOLOR® tube tests incl. manual, batteries and certificate	919345

PF-3	
Туре	LED photometer with microprocessor control, self-test and auto-calibration
Optics	LED + interference filters Insensitive to external light for fast measurements without cuvette slot cover
Wavelengths	3 wavelengths; depending on version Pool/Drinking Water: 450 nm/530 nm/590 nm Soil: 365 nm/450 nm/660 nm COD: 365 nm/450 nm/595 nm Fish: 450 nm/530 nm/660 nm
Wavelength accuracy	± 2 nm, bandwidth at half transmission 10 nm-12 nm
Light source	LED
Detector	Silicon-photodiode
Compatible test kits	VISOCOLOR® ECO tests (see page 76) VISOCOLOR® Powder Pillows (see page 82) NANOCOLOR® tube tests (see page 88)
Cuvette slot	Tubes 16 mm OD
Memory	50 results
Display	Backlit graphic display, 128 x 64 pixels, all important data at a glance: result with unit, date, time
Auto-off function	Inactive or automatic shutdown after 5 min, 10 min, 15 min, 20 min
Quality control	With NANOCONTROL NANOCHECK 2.0
Operation	Self-explanatory menu guidance, foil keypad, test selection via parameter lists
Interface	Mini-USB
Update	Free of charge via Internet / PC
Operating range	10 °C-40 °C, up to 80 % relative humidity (non-condensing)
Power supply	3 AA batteries, rechargeable batteries, USB interface; optional internal accu-pack
Housing	Shock-resistant; waterproof and dustproof, according to IP 68
Dimensions	170 mm x 95 mm x 68 mm
Weight	0.5 kg
Warranty	2 years
CE	CE certified

NANOCOLOR® TIC-Ex

Removal of inorganic carbon in TOC analysis

The $NANOCOLOR^{\scriptsize @}$ TIC-Ex is required during the sample preparation of MACHEREY-NAGEL TOC tube tests. For evaluation of the total organic carbon (TOC) prior to determination, the inorganic carbon needs to be removed from the sample. The removal is accomplished by purging of air with the help of the NANOCOLOR® TIC-Ex through the prepared sample solution.

The acidified sample solutions are put into the cuvette holder and placed in the premarked positions of the NANOCOLOR® TIC-Ex. The preinstalled pipette tips are dipped into the sample solutions by pressing down the lowering mechanism of the NANOCOLOR® TIC-Ex. After switching on the device, air is automatically purged through the sample solutions in the cuvettes for five minutes. Hereby the inorganic carbon is removed as carbon dioxide quantitatively. After the elapsed time the process stops automatically. The pipette tips are removed from the solutions and can be disposed using the removing mechanism on top. Afterwards the sample solutions are treated following the next steps of the respective TOC test kit.

Good to know

The NANOCOLOR® TIC-Ex can be used even for very hard waters with up to 48° d and therefore is superior to other methods for TIC removal. To check the carbonate hardness of your samples, we recommend QUANTOFIX® carbonate hardness (REF 91323).

Ordering information

Description	REF
NANOCOLOR® TIC-Ex	916993
Device for removal of TIC, incl. cuvette holder, manual, mains adapter and certificate in a cardboard box	

TIC-Ex	
Туре	Device for removal of TIC
Operation	Via two buttons
Operating range	5-40 °C, 20-80 % relative humidity (non-condensing)
Power supply	9 V DC/2.0 A
Dimensions	350 x 300 x 235 mm
Weight	4.95 kg
Warranty	2 years
CE	CE certified

NANOCOLOR® Sipper module

Dealing with large sample numbers in photometric analysis often requires a lot of time and resources due to the preparation of the samples in different cuvettes and the frequent changes of the cell in the photometer. The sipper module NANOCOLOR® FP-200 is an optional accessory for the spectrophotometers NANOCOLOR® VIS II and UV/vis II, which can significantly reduce the analysis effort for high sample quantities. A constant amount of liquid is pumped through a flow cell (2 mm, 10 mm or 50 mm) in the photometer and the absorbance is measured automatically. As the same optical conditions apply to both the zero measurement and the measurement of the sample, the measuring accuracy can be improved by working with the NANOCOLOR® FP-200.

Good to know

Using the sipper module, the danger of direct contact with chemicals is drastically reduced. A recasting of samples into the cuvettes is no longer necessary.

Ordering information

Description	REF
Sipper module NANOCOLOR® FP-200	919180
for NANOCOLOR® UV/vs II and NANOCOLOR® VIS II incl. manual, USB cable, tygon-tubing set with adapters, intake needle and certificate	

FP-200	
Туре	Peristaltic pump
Operation	Fully automatic using the spectrophotometers NANOCOLOR® VIS II and UV/vis II
Housing	Protection rating IP 30
Interfaces	USB B
Additional information	Wavelength range - 340 nm-900 nm (plastic), 190 nm-900 nm (quartz glass)
Pumping capacity	1 mL/s
Power supply	Via USB cable, 5 V, 500 mA
Operating range	10-40 °C max. 80 % relative humidity (non-condensing)
Dimensions	125 x 177 x 69 mm
Weight	365 g
Warranty	2 years
CE certified	Yes

Analytical quality control for the entire analysis system

The NANOCONTROL equipment for quality control of the photometers is designed to support our IQC concept. It always allows the user to check the correct functionality of the devices and therefore represents a cornerstone for ensuring correct measurement results.

Checking the photometric accuracy

NANOCONTROL NANOCHECK 2.0 is used as secondary standard for the determination of photometric accuracy and linearity. It is a crucial tool for the inspection of spectrophotometers and filter photometers, besides the use of standards and spiking solutions. Two different colored solutions are included in three concentrations each. They are factory-checked against a reference spectrophotometer. The absorbances of these NIST-traceable control solutions are reported in a comprehensive certificate. The automated linearity check in our spectrophotometers NANOCOLOR® VIS II, NANOCOLOR® Loving III and NANOCOLOR® Advance provides an additional, unique level of safety. A 2D-Barcode on each box is used to comfortably program our spectrophotometers with the LOT-specific data. Besides the check of the photometric accuracy NANOCOLOR® VIS II and NANOCOLOR® UV/vis II also support an automatic photometric linearity check when using NANOCONTROL NANOCHECK 2.0.

All features of *NANOCONTROL* NANOCHECK combined make photometer inspection easy as never before.

Checking the turbidity calibration

NANOCONTROL NANOTURB is a turbidity standard for nephelometric turbidity measurements for our photometers. The solutions are used as a primary standard for calibrating and checking the nephelometric turbidity unit in accordance with ISO 7027. The test solutions are ready for immediate use and must only be placed into the photometer. Dilution steps or contact with chemicals are avoided effectively.

Good to know

With the NANOCONTROL
NANOCHECK 2.0
evaluation sheet the requirements for quality assurance can be fulfilled and it serves as validation against authorities and supervisors.

Ordering information

REF	Shelf life	GHS
925703	2 years	•
925702	8 months	
914820		
	925703	925703 2 years 925702 8 months

GHS: Globally harmonized system: This product contains harmful substances, which must be labeled as hazardous. For detailed information, please see the SDS.

Accessories for photometers

The complete analytics from a single source

MACHEREY-NAGEL photometers fulfill all requirements for daily laboratory analysis. In addition, many accessories are available to be equipped optimally for special applications. The sipper module NANOCOLOR® FP-200 for instance enables timesavings and increased accuracy for standard tests with high sample throughput. The user receives all accessories from a single source ensuring compatibility with the different photometers at all times.

Ordering information

Description	REF	Content
Transport cases for photometers		
Transport case for spectrophotometer NANOCOLOR® UV/vis II	919624	1 piece
Transport case for spectrophotometer NANOCOLOR® VIS II	919652	1 piece
Transport case for spectrophotometer NANOCOLOR® Advance	919757	1 piece
Special filters for photometers NANOCOLOR® 500 D/400 D/350 D/PF-12 ^{Plus} /PF-12		
Interference filter 412 ± 2 nm (incl. installation) for tube test NANOCOLOR® Formaldehyde 10	919841.2	1 piece
Special filter incl. ex-factory installation (wavelengths on request)	919850.2	1 piece
Handheld scanner		
Handheld scanner for NANOCOLOR® spectrophotometers	919134	1 piece
Sipper		
Sipper module NANOCOLOR® FP-200 for NANOCOLOR® UV/vis II and NANOCOLOR® VIS II incl. manual, USB cable, tygon-tubing set with adapters, intake needle and certificate	919180	1 piece
Tubing set for sipper module NANOCOLOR® FP-200 consisting of tygon-tube set with adapters and pump tubing with pre-installed fittings	919181	1 piece
Support stand for NANOCOLOR® FP-200	919143	1 piece
Manuals		
Manual (quick start guide) for NANOCOLOR® VIS II and UV/vis II	919601	1 piece
Manual (quick start guide) for NANOCOLOR® Advance	919754	1 piece
Manual for photometer PF-12 ^{Plus}	919252	1 piece
Manual for photometer PF-3	919392	1 piece
VISOCOLOR® ECO test instructions for photometer PF-3	934001	1 piece
WISOCOLOR® ECO test instructions for photometer PF-12 ^{Plus}	931503	1 piece
Manual for Sipper module NANOCOLOR® FP-200	919182	1 piece
Lamps		
Halogen lamp for NANOCOLOR® VIS II and UV/vIS II	919604	1 piece
Halogen lamp for NANOCOLOR® Advance	919759	1 piece
Deuterium lamp for NANOCOLOR® UV/vis II	919603	1 piece
Tungsten lamp for NANOCOLOR® 500 D / 400 D / 350 D / 300 D / 250 D / PT-3	919787	1 piece
Cuvettes		
Calibration cuvette 16 mm for NANOCOLOR® photometers	916908	1 piece
Calibration cuvette 24 mm for NANOCOLOR® Advance	916930	1 piece
Flow cuvette, quartz glass, 2 mm optical path, for NANOCOLOR® UV/vis and UV/vis II	919127	1 piece
Flow cuvette, quartz glass, 10 mm optical path, for NANOCOLOR® UV/vis II	919626	1 piece
	040450	1 piece
Flow cuvette, optical glass, 10 mm optical path, for NANOCOLOR® VIS, VIS II and UV/vis II	919158	i piece

¹⁾ Required additionally: Cable set, REF 919133; ²⁾ Required additionally: Mains adaptor, REF 91906

³⁾ Required additionally for PF-3: Mini USB-cable, REF 919390

Accessories for photometers

Description	REF	Content
Quartz glass cuvette, 2 mm optical path, for NANOCOLOR® W/vis and W/vis II	919122	1 piece
Quartz glass cuvette, 10 mm optical path, for NANOCOLOR® UV/vis and UV/vis II	919120	1 piece
Quartz glass cuvette, 50 mm optical path, for NANOCOLOR® UV/vis and UV/vis II	919121	1 piece
Glass cuvettes, 5 mm optical path	91932	2 pieces
Glass cuvettes, 10 mm optical path	91933	2 pieces
Glass cuvettes, 20 mm optical path	91934	2 pieces
Glass cuvette, 50 mm optical path	91935	1 piece
Semi-micro cuvette, 50 mm optical path	91950	1 piece
Lids for glass cuvettes, 10 mm	91941	2 pieces
Lids for glass cuvettes, 50 mm	91940	2 pieces
Disposable plastic cuvettes, 10 mm optical path	91937	100 pieces
Fixing for 10 mm cuvette for NANOCOLOR® Advance, VIS II, VV/v/s and VV/v/s II	919136	1 piece
Test tubes, 16 mm OD	91680	20 pieces
Test tubes, 24 mm OD	936101	6 pieces
Cuvette adapter A and B for 10, 16, 20, 50 mm and 24 mm cuvettes for NANOCOLOR® Advance	919752	1 piece
Cover		
Cover for cuvette slot for NANOCOLOR® UV/vis II	919606	1 piece
Cover for cuvette slot for NANOCOLOR® VIS II	919654	1 piece
Cover for cuvette slot for NANOCOLOR® Advance	919753	1 piece
Protective coverings		
Protective covering for NANOCOLOR® UV/vis II	919605	1 piece
Protective covering for NANOCOLOR® VIS II	919651	1 piece
Protective covering for NANOCOLOR® Advance	919751	1 piece
Protective covering for NANOCOLOR® 500 D / 400 D / 350 D	91918	1 piece
Printer		
■ NANOCOLOR® thermal printer for photometer NANOCOLOR® VIS II and UV/VIS II (incl. mains adapter and manual)	919655	1 piece
NANOCOLOR® thermal printer for NANOCOLOR® UV/vis 1)2)/VIS 1)2)/500 D/400 D/350 D/300 D/250 D and photometer PF-11 2) (incl. printer cable, without mains adapter)	91916	1 piece
Printer paper rolls for NANOCOLOR® thermal printer for NANOCOLOR® VIS II / UV/vis II, 79 mm width, core 12 mm, OD 80 mm	919656	3 pieces
Software		
NANOCOLOR® software for Linus / 500 D / 400 D / 350 D / 300 D / 250 D / PF-12 Plus / PF-12 / BioFix® Lumi-10	91902	1 piece
Accessories for data transfer		
USB cable AA for NANOCOLOR® 500 D	919686	1 piece
USB cable AB for NANOCOLOR® VIS/VIS II/UV/VIS/VV/vis II/VARIO 4/VARIO C2/PF-12 ^{Plus} /PF-12/FP-200	919687	1 piece
LAN cable (1.5 m) for NANOCOLOR® Advance, VIS II and W/vs II	919682	1 piece
Mini USB cable for photometer PF-3 and VARIO Mini	919390	1 piece
Zero modem cable, serial, 2x9 pin SUB-D socket, for NANOCOLOR® 500 D/400 D/350 D/300 D/250 D/PT-3/PF-10/PF-11 and BioFix® Lumi-10	919773	1 piece
Adaptor, 9 pin SUB-D-plug to 25 pin SUB-D socket	919681	1 piece
NANOCOLOR® USB stick for NANOCOLOR® Advance, VIS II / W/vis II / VARIO Mini	919123	1 piece
■ NANOCOLOR® USB stick for NANOCOLOR® VIS / UV/VIS / VARIO 4 / VARIO C2 / VARIO C2 M / VARIO HC	919119	1 piece
Power supply		· · · · · · · · · · · · · · · · · · ·
Mains adaptor for NANOCOLOR® Advance, VIS, VIS II and VARIO Mini	919156	1 piece
¹ Required additionally: Cable set, REF 919133;		*

Required additionally: Cable set, REF 919133;
 Required additionally: Mains adaptor, REF 91906
 Required additionally for PF-3: Mini USB-cable, REF 919390

Accessories for photometers

Description	REF	Content
USB mains adaptor for photometer PF-12 ^{Plus} /PF-12/PF-3 ³⁾	919220	1 piece
Mains adaptor for NANOCOLOR® 500 D/400 D/350 D/300 D/250 D/PT-3/PF-11/FP-100; prim. 100 V-240 V \sim ; sec. 9 V-1500 mA	91906	1 piece
Rechargeable battery pack for photometer PF-12 ^{Plus} / PF-12	919201	1 piece
Rechargeable battery pack for photometer PF-3	919391	1 piece
Battery charger for photometer PF-3/PF-12/PF-12/PF-11/PF-10, incl. 4 rechargeable batteries	919221	1 piece

NANOCOLOR® VARIO 4, VARIO C2 and VARIO C2 M

Heating blocks for reliable digestions

The NANOCOLOR® heating blocks enable a fast and safe performance of all kinds of sample digestions required in water and waste water analysis. Standard parameters for routine digestions such as COD, TOC, total nitrogen, total phosphorus and metals are pre-programmed in the heating blocks and help the user to avoid mistakes.

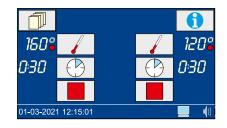
The small one and the big one

The heating block NANOCOLOR® VARIO C2 enables the simultaneous digestion of up to 12 samples. For a higher sample throughput the NANOCOLOR® VARIO 4 is perfectly suited, as it allows up to 24 simultaneous digestions in two separately controllable heating units. Therefore, MACHEREY-NAGEL offers the appropriate heating block to each user for routine analysis in the laboratory. The NANOCOLOR® heating blocks are equipped with lockable protective lids and a touch protection for increased work safety. The NANOCOLOR® VARIO C2 M heating block with two 22 mm and eight 16 mm holes is available for the digestion of large sample volumes as part of metal analysis.

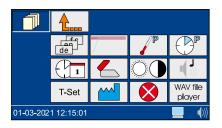
Extremely versatile and maximally secure

In addition to the preprogrammed temperatures and heating times, a large number of user-specific digestion methods can be stored. The USB and RS232 interfaces allow an easy connection to a PC and enable the convenient linkage to the NANOCONTROL inspection equipment monitoring tools. The graphical representation of the heating curves enhances transparency about the temperature stability. The electronic overtemperature sensor protects the heating block from overheating.

Temperature testing and calibration


A temperature test can be performed using the NANOCOLOR® T-Sets to safeguard results against authorities and supervisors. The free PC software of the heating blocks facilitates checking of temperatures and the creation of the respective reports. After measurement data transfer via the interfaces using the PC software, the testing certificate is created directly, which ensures a GLP-compliant documentation of all equipment testing.


Suitable for all NANOCOLOR® digestion methods


Application	Temperature	Time
COD according to DIN ISO 15705	148 °C	120 min
High-speed COD	160 °C	30 min
TOC	100 °C	60 min
Total nitrogen	120 °C	30 min
Total kjeldahl nitrogen	120 °C	30 min
Total phosphorus	120 °C	30 min
Organic acids	100 °C	10 min
Total metals	120 °C	30 min
AOX	120 °C	30 min
Hydrocarbons	148 °C	120 min
Programmable, user-defined programs	40 °C–160 °C	0 h:01 min-9 h:59 min

Good to know

The NANOCOLOR® USB T-Set is a simple and unique tool for inspection equipment monitoring of MACHEREY-NAGEL heating blocks by the user himself. For further information about the NANOCOLOR® USB T-Set see page

NANOCOLOR® VARIO 4, VARIO C2 and VARIO C2 M

Easy

- User-friendly touch screen
- Intuitive usage via icons
- Operation without the need for intensive training

Fast

- All important parameters within 30 minutes
- Extremely short heating-up times
- Call up of heating programs in a matter of seconds

Secure

- High temperature stability
- Graphically visualized heating curves
- Internal quality control via NANOCOLOR® T-Set

Ordering information

Description	REF
Heating block NANOCOLOR® VARIO 4 with two blocks with separate control, 2 x 12 bores for test tubes of 16 mm OD, incl. power cable, two separate protective coverings, manual, data cable, software DVD and certificate	919300
Heating block NANOCOLOR® VARIO C2 12 bores for test tubes of 16 mm OD, incl. power cable, protective covering, manual, data cable, software DVD and certificate	919350
Heating block NANOCOLOR® VARIO C2 M – version for metal analysis, with large bores – 8 bores for test tubes of 16 mm OD, 2 bores for reaction vessels of 22 mm OD, incl. power cable, protective covering, manual, data cable, software DVD and certificate	919350.1

NANOCOLOR® VARIO 4, VARIO C2 and VARIO C2 M

Technical data

Type	Heating blocks for chemical-analytical digestions
Number of bores	2 x 12 of 16 mm OD (<i>VARIO 4</i>) 12 of 16 mm OD (<i>VARIO C2</i>) 8 of 16 mm OD + 2 of 22 mm OD (<i>VARIO C2 M</i>)
Display	Colored, backlit LCD touch screen
Operation	Icon-based menu guidance via touch screen
Temperatures	6 preprogrammed temperatures 70 °C/100 °C/120 °C/148 °C/150 °C/160 °C 6 free memory locations for individual temperature settings
Temperature range	40 °C-160 °C (1 °C increments)
Temperature stability	± 1 °C (according to DIN, EN, ISO and EPA methods)
Warm-up time	From 20 °C to 160 °C within 10 minutes
Heating times	5 preprogrammed heating times 10 min/30 min/60 min/120 min/cont. 7 free memory locations for individual heating times
Time range	0 h:01 min-9 h:59 min (1 °C increments)
Safety	Replaceable safety covers as contact protection Lockable protective lids Overheating protection
Interfaces	Bidirectional serial RS232, USB A (function) and USB B (Host)
Internal quality control (IQC)	With NANOCOLOR® T-Set (REF 919917) and NANOCOLOR® USB T-Set (REF 919921) Optional fully automatic calibration and generation of a test certificate for instrument control and monitoring
Languages	DE/EN/FR/ES/HU/PL/CZ/TR/DK
Update	Free via Internet / PC and USB stick
Operating range	10 °C–40 °C; max. 80 % relative humidity (non-condensing)
Power supply	110 V-230 V~, 50/60 Hz
Power consumption	300/550 W (<i>VARIO 4</i>) 150/300 W (<i>VARIO C2</i> and <i>VARIO C2 M</i>)
Dimensions	290 mm x 287 mm x 146 mm (<i>VARIO 4</i>) 169 mm x 282 mm x 146 mm (<i>VARIO C2</i> and <i>VARIO C2 M</i>)
Weight	approx. 3.2 kg (<i>VARIO 4</i>) approx. 2.0 kg (<i>VARIO C2</i> and <i>VARIO C2 M</i>)
Warranty	2 years
CE	CE certified

Compact heating block for mobile analysis

Sample digestion is an essential step in the determination of a couple of important parameters in photometric water analysis, but is usually only carried out in a laboratory. The new NANOCOLOR® VARIO Mini now gives the ability to perform sample digestions on-site or on the road. This guarantees a mobile and safe performance of all sample digestions required in the water and waste water analysis. The compact size and the flexible power supply, e.g. through the power port of a car, ease the use and offer a maximum flexibility for the everyday analysis.

Simply clever

The NANOCOLOR® VARIO Mini has six positions for test tubes with an outer diameter of 16 mm and therefore offers the opportunity to examine small numbers of samples directly on the spot. Furthermore, the device impresses with a temperature stability of ± 1 °C. All digestions of the MACHEREY-NAGEL test kits can easily be conducted using the pre-programmed temperatures and heating times. With the NANOCOLOR® USB T-Set MACHEREY-NAGEL offers a reliable inspection equipment monitoring tool to ensure the temperature stability and the accuracy of the temperature calibration of the NANOCOLOR® VARIO Mini. It allows the easy temperature checking and calibration of the heating block and thereby results in an always accurate and reliable digestion of the sample.

Ordering information

Description	REF
■ Heating block NANOCOLOR® VARIO Mini,	919380
6 bores for test tubes of 16 mm OD, incl. power cable, protective covering, manual	
and certificate	

Good to know

No power supply available? The NANOCOLOR® VARIO Mini can be operated with an external battery or the power port of a car as the only heating block device of its class. For the comfortable transport MACHEREY-NAGEL provides compact and complete mini laboratories as case solutions for direct analysis at the place of sampling.

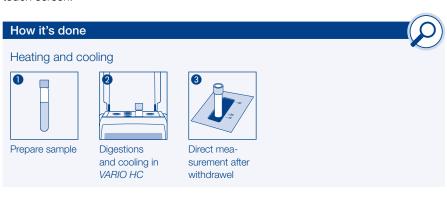
Technical data

room noor data	
NANOCOLOR® VARIO Mini	
Туре	Heating block for chemical and analytical digestion
Number of bores	6 of 16 mm OD
Display	Graphic display 128 x 64 pixel
Operation	Icon-based menu guidance with four buttons
Temperatures	70 °C, 100 °C, 120 °C, 148 °C, 150 °C, 160 °C
Temperature stability	± 1 °C (according DIN, EN, ISO and EPA methods)
Warm-up time	From 20 °C to 160 °C within 25 minutes (at 20 °C ambient temperature)
Heating times	30 min, 60 min, 120 min
Safety	Safety cover with lockable protective lid and overheating protection
Interfaces	Mini-USB-OTG (On-The-Go)
Internal quality control (IQC)	With NANOCOLOR® USB T-Set (REF 919921) Optional fully automatic calibration and test certificate generation
Update	Free via Internet / PC and USB stick
Operating range	10 °C-40 °C; max. 80 % relative humidity (non-condensing)
Power supply	12 V, 5 A
Power consumption	60 W
Dimensions	105 mm x 125 mm x 170 mm
Weight	670 g
Warranty	2 years
CE	CE certified

Heating blocks www.mn-net.com (MN)

NANOCOLOR® VARIO HC

Heating block for fast digestions


The factor time plays a crucial role in many laboratories when conducting sample digestions. The NANOCOLOR® VARIO HC enables the user to digest all important parameters in just 30 minutes. The usually very slow cooling down of the cuvettes after digestion is greatly accelerated in the NANOCOLOR® VARIO HC by the active cooling unit. Hereby the test tubes are ready for the measurement or further analysis steps shortly after the digestion has ended.

Simply fast

Thanks to the intelligent linkage of heating-up, digestion and cooling-down the NANOCOLOR® VARIO HC allows the performance of a COD test in less than 45 minutes. The readily prepared cuvettes are directly inserted into the cold heating block, which means an additional time saving for the user as the waiting of the heating process is omitted.

Approved and versatile

In addition to the cooling function, the NANOCOLOR® VARIO HC comes with all features provided by our proven heating blocks NANOCOLOR® VARIO 4 and VARIO C2. Naturally, this includes the possibility of checking and calibrating the temperature with the NANOCOLOR® T-Sets, thus fulfilling the requirements of analytical quality control. The safety of the user is as important as accurate results. The protection lid of the NANOCOLOR® VARIO HC locks electronically during digestion. The operation of the heating block and the input of digestion programs are carried out via a user-friendly touch screen.

Both, the temperature of the cooling process as well as the ventilation speed can be individually adjusted by the user.

Ordering information

Description	REF
Heating block NANOCOLOR® VARIO HC – with cooling function –	919330
12 bores for test tubes of 16 mm OD and fan, incl. power cable, protective covering, manual, data cable, software DVD and certificate	

Technical data

NANOCOLOR® VARIO HC	
Туре	Heating block for chemical-analytical digestion
Number of bores	12 of 16 mm OD
Display	Colored, backlit LCD touch screen
Operation	Icon-based menu guidance via touch screen
Temperatures	6 preprogrammed temperatures 70 °C/100 °C/120 °C/148 °C/150 °C/160 °C 6 free memory locations for individual temperature settings
Temperature range	40 °C-160 °C (1 °C increments)
Temperature stability	± 1 °C (according to DIN-, EN-, ISO- and EPA-methods)
Warm-up time	from 20 °C to 160 °C within 10 minutes
Heating times	5 preprogrammed heating times 10 min/30 min/60 min/120 min/cont. 7 free memory locations for individual heating times
Time range	0 h:01 min-9 h:59 min (increments 0 h:01 min)
Safety	Replaceable safety covers for contact protection Lockable protective lids Overheating protection
Interfaces	Bidirectional serial RS232, USB A (function) and USB B (Host)
Internal quality control (IQC)	With NANOCOLOR® T-Set (REF 919917) and NANOCOLOR® USB T-Set (REF 919921) Optional fully automatic calibration and test certificate generation
Languages	DE/EN/FR/ES/HU/PL/CZ/TR/DK
Update	Free via Internet and USB-stick
Operating range	10 °C-40 °C; max. 80 % relative humidity (non-condensing)
Power supply	110 V–230 V~, 50/60 Hz
Power consumption	150/550 W
Dimension	290 mm x 287 mm x 146 mm
Weight	approx. 3.2 kg
Warranty	2 years
CE	CE certified

Heating blocks www.mn-net.com 149

NANOCOLOR® T-Set and USB T-Set

Analytical quality control for the entire analysis system

The unique inspection equipment NANOCOLOR® T-Set is an electronic temperature sensor, which is suitable for the temperature control and automatic calibration of all NANOCOLOR® heating blocks. The user can check the heating blocks independently with the NANOCOLOR® T-Set for internal quality control purposes. For this reason the NANOCOLOR® T-Set is an important building block for a comprehensive analytical quality assurance.

Independent self-control

By a target-actual comparison, the temperatures in the heating blocks can be tested quickly and easily. All programmed temperatures are measured, registered and stored in the heating block by the NANOCOLOR® T-Set. This tool also enables an automatic calibration of the heating blocks. Our customers appreciate the NANOCOLOR® T-Set, as it allows a cost-effective and independent monitoring of their own heating block.

Data transfer and documentation

After completion of the temperature control or calibration, the collected data can be transferred to a computer easily via the RS232 or USB port. The free of charge NANOCOLOR® T-Set PC software enables a GLP-compliant documentation and the creation of direct test certificates.

Now with temperature display

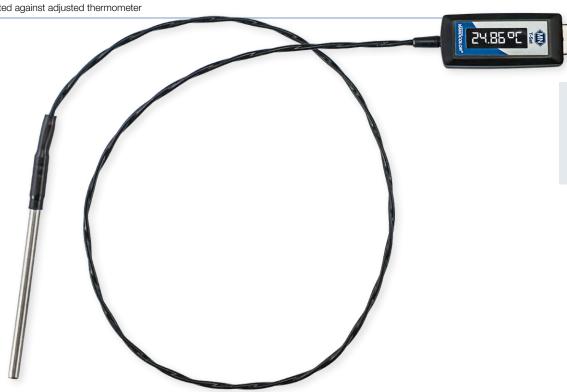

The new NANOCOLOR® USB T-Set is a advancement of the established NANOCOLOR® T-Set, extended by a LED display to control the measured temperature. Therefore, temperature measurements can now be carried out independent of the heating block.

Good to know

The NANOCOLOR® T-Sets can be used also for external temperature measurements, e.g. for the determination of the sample temperature.

Good to know

The temperature display of the NANOCOLOR® USB T-Set can be flipped by tapping on the edge of the device. Therefore, an optimal reading is always guaranteed.


NANOCOLOR® T-Set and USB T-Set

Ordering information

Description	REF
NANOCOLOR® T-Set for electronic temperature control and calibration of the heating blocks NANOCOLOR® VARIO 4 / VARIO C2 / VARIO C2 M / VARIO HC / VARIO 3 / VARIO compact	919917
NANOCOLOR® USB T-Set for electronic temperature control and calibration of the heating blocks NANOCOLOR® VARIO 4 / VARIO C2 / VARIO C2 M / VARIO HC / VARIO Mini 1)	919921
VARIO C2 M / VARIO HC / VARIO Mini 1) 1) Additional adapter for USB-T-Set (REF 919937) is required.	

Technical data

	T-Set	USB T-Set
Туре	Electronic thermal sensor for temperature control, calibra monitoring	tion and generation of a test certificate for inspection equipment
Detector	PT 1000 (95 mm length x 4 mm Ø)	
Display	-	LED display
Operation	Via touch screen of the heating blocks and the T-Set soft	ware
Temperature range	0 °C-200 °C	
Precision	± 1 °C	
Accuracy	± 0.2 °C	
Long term stability	± 0.1 °C	
Interface	RS232	USB A
Operating range	10 °C-40 °C max. 80 % relative humidity (non-condensing	ng)
Power supply	Via RS232	Via USB A
Power consumption	Max. 20 mW	
Dimensions	75 cm (length)	73 cm (length)
Weight	Approx. 60 g	
Warranty	2 years	
CE	CE certified	
Certificate	Calibrated against adjusted thermometer	

Accessories for heating blocks

The complete analytics from a single source

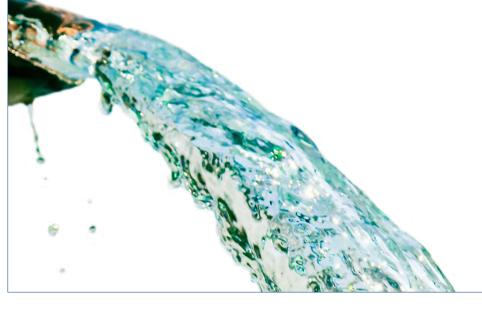
MACHEREY-NAGEL heating blocks represent an important corner stone of the NANOCOLOR® analytical system. By the perfect combination of test kits, heating blocks and photometers, the user is well equipped for daily laboratory analysis. In addition to the digestion for the classical parameters such as COD and phosphate, some customers require special solutions, e.g. for the digestion of metals using NanOx Metal. The accessories required for this purpose are available as a complete package from MACHEREY-NAGEL. For an overview of available digestion reagents see page 110. All this ensures the compatibility of the equipment and a reliable analysis.

Good to know

The NANOCOLOR® VARIO Mini can be operated independent of the grid with a car adapter cable (REF 919938) from our heating block accessories.

Accessories

Description	REF	Content
Acessories for temperature control of heating blocks		
T-Set adaptor 16 mm	919924	1 piece
T-Set adaptor 13 mm	919925	1 piece
USB-serial-Adaptor for heating blocks NANOCOLOR® VARIO 4 / VARIO C2 / VARIO C2 M / VARIO HC / VARIO 3 / VARIO compact and NANOCOLOR® T-Set	919926	1 piece
USB-T-Set adaptor for NANOCOLOR® VARIO Mini	919937	1 piece
Accessories for digestions in heating blocks		
Protective covering for NANOCOLOR® VARIO 4 / VARIO C2 / VARIO C2 M / VARIO HC, transparent	919310	1 piece
Protective covering with bores for TOC-tests for NANOCOLOR® VARIO 4 / VARIO C2 / VARIO C2 M / VARIO HC, transparent	919309	1 piece
Protective covering for NANOCOLOR® VARIO Mini, transparent	919381	1 piece
Safety cover for NANOCOLOR® VARIO 4 / VARIO C2 / VARIO HC / VARIO 3 / VARIO compact	916598	1 piece
Reducing adaptors 16 → 13 mm for NANOCOLOR® heating blocks	916910	8 pieces
Reducing adaptors 22 → 16 mm for NANOCOLOR® heating blocks	919916	2 pieces
Decomposition apparatus including tube for sample decomposition, reducing adaptor and condensor	91629	1 piece
Tubes for sample decomposition 22 mm OD, NS 19/26 with glass stopper	91666	2 pieces
Condenser 200 mm, type KS with 3 m PE tubing, NS 19/26 bottom, NS 29/32 top	91667	1 piece
Absorption attachment for condenser NS 29/32	91668	1 piece
Reaction tubes 16 mm OD	91680	20 pieces
Reaction tubes 22 mm OD	91622	2 pieces
Power supply 1)		
Car adapter cable for NANOCOLOR® VARIO Mini	919938	1 piece
Mains adaptor for NANOCOLOR® VIS, NANOCOLOR® VIS II and VARIO Mini	919156	1 piece
Accessories for data transfer		
USB cable AB for NANOCOLOR® UV/vis/UV/vis II/VIS/VIS II/VARIO 4/VARIO C2/VARIO C2 M and PF-12/PF-12 ^{Plus}	919687	1 piece
Mini USB cable for compact photometer PF-3 and NANOCOLOR® VARIO Mini	919390	1 piece
Manuals		
Manual for NANOCOLOR® VARIO C2 and NANOCOLOR® VARIO 4	919311	1 piece
Manual for NANOCOLOR® VARIO HC	919312	1 piece
Manual for NANOCOLOR® VARIO Mini	919383	1 piece
1) For information about an external battery for NANOCOLOR® VARIO Mini, please contact MACHEREY-NAGEL.		


NANOCOLOR® COD test kits Safe, safer, the safest

Reliable COD analysis

- No risk of leaking gases
- Minimum quantity of hazardous chemicals
- Hg-free version available
- 13 measurement ranges available for all requirements and demands

QUANTOFIX® Relax

Reflectometer for evaluation of test strips

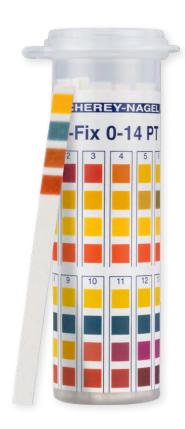
The QUANTOFIX® Relax is the ideal device for the objective evaluation of our QUANTOFIX® test strips. It combines the simplicity of test strips with the safety of instrumental analysis and thus the best out of these two worlds. The QUANTOFIX® Relax does not require any special strips, but evaluates the normal pH-Fix and QUANTOFIX® test strips. Therefore entrance into instrumental analysis is very simple; the same strip can be used for visual and instrumental evaluation.

Excellent usability

All functions of the device can be selected with the touch screen display. Therefore, the operation is simple and intuitive, without the need for extensive training. The auto-start function initiates the measurement as soon as the test strip is placed on the strip holder. Therefore, it is not necessary to touch the device for performing a measurement. Contaminations are reliably avoided. Frequently used parameters can be stored as favorites. Simple tapping can quickly access these favorites during operation.

Quantitative results

The optics of the QUANTOFIX® Relax has been proven for years in medical technology and supplies secure and standardized values. Thereby an accuracy of \leq 10 % is achieved for many parameters; a hardly achieved level in the analysis of test strips, yet. The evaluation with the QUANTOFIX® Relax is not interfered by external factors and is therefore absolutely objective and precise. The estimation of measured values between the gradations of the scale is omitted.


Documentation and data transfer

The QUANTOFIX® Relax allows the assured documentation of analytics with test strips. Results are printed immediately after the measurement. The printout can be e.g. appended to a production protocol or kept for later quality controls. The transmission to an information system can be realized easily. In addition, the data are stored in the device and can be simply read out or printed again later on.

Good to know

For an overview of all the parameters and pH-Fix test strips available on the QUANTOFIX® Relax, please refer to page 52 and 60.

Ordering information

Description	REF
Reflectometer QUANTOFIX® Relax for evaluation of QUANTOFIX® test strips incl. power supply, adapter, manual, 1 roll of printer paper and certificate	91346

Accessories

Description	REF	Content
■ Transport case for reflectometer QUANTOFIX® Relax for individual combination with 1 QUANTOFIX® Relax, 3 rolls of printer paper, 6 QUANTOFIX® tubes, 6 batteries, power supply, manual and accessories	930889	1 piece
■ Printer paper for QUANTOFIX® Relax	93065	5 pieces
■ Barcode scanner for QUANTOFIX® Relax	93074	1 piece
■ Power supply for QUANTOFIX® Relax	930995	1 piece

Objective

- High-quality optics
- Independent from external light and subjective color perception
- Standardized reaction times

Easy

- Intuitive use via touch screen
- Contactless measurement due to auto-start function
- Favorites list for the most important parameters

Safe

- Reproducible results independent of the user
- Printout of results for optimized documentation
- Accuracy for many parameters ≤ 10 %

Technical data

QUANTOFIX® Relax	
Туре	Reflectometer with microprocessor control, self-test and auto-calibration
Calibration	Automatic, self calibrating
Capacity	50 strips per hour
Data storage	200 results
Display	LCD display with touch screen
Operation	alphanumeric input via touch screen
Interface	RS232, USB B (Host), PS/2 for connection of a keyboard or barcode scanner
Languages	DE/EN/FR/ES/IT/PT/PL/TR/HU
Update	Free via Internet / PC
Operating range	10 °C-40 °C, max. 80 % relative humidity (non-condensing)
Power supply	100 V-240 V~, optional with 6 AA batteries
Dimensions	200 mm x 160 mm x 75 mm
Weight	710 g (without batteries and power supply)
Warranty	2 years
CE	CE certified

BioFix® Lumi-10

Compact luminometer for mobile use

The BioFix® Lumi-10 is a compact luminometer for the measurement of bio and chemical luminescence reactions with constant light emission. Due to its size it is ideally suited for the use in the laboratory or on the road and can be operated with a power supply as well as rechargeable batteries.

Incredibly versatile

Thanks to its highly sensitive detector (Ultra-Fast Single Photon Counter) the BioFix[®] Lumi-10 can be used for a variety of applications. This includes amongst others bio toxicity tests, ATP- and biomass determinations, reporter-gene assays, luminescence immunoassays as well as NAD(P)H measurements.

Individually programmable

The BioFix® Lumi-10 has six individually adjustable measurement protocols and a data memory for up to 2000 results. It provides the opportunity for single, multiple and extensive screening measurements. The results are optionally displayed in % inhibition, % stimulation or RLU (relative light units). The user can set the particular measurement parameters such as incubation time or measurement time individually. By a previous definition of detection limits, the results can be automatically classified by the device. There are already pre-programmed test methods available for the determination of luminescent bacteria toxicity tests and ATP tests.

Ordering information

Description	REF
BioFix® Lumi-10	940008
incl. manual, rack, cuvettes and spare adaptor	

Good to know

Thanks to six individually adjustable measurement protocols, the BioFix® Lumi-10 is extremely versatile and suitable for many applications.

Accessories

Description	REF	Content
Absorbance color correction cuvettes with 100 aspirators	940006	4 pieces
Glass cuvettes 12 mm OD	916912	690 pieces
Rack for glass cuvettes 12 mm OD, 5 x 10 positions	945013	1 piece
■ Manual BioFix® Lumi-10, German	940014	1 piece
■ Manual BioFix® Lumi-10, English	940014.en	1 piece
Mains adaptor	940009	1 piece

Technical data

Luminometer Ultra-Fast Single Photon Counter
Ultra-Fast Single Photon Counter
380 nm–630 nm
Microprocessor software
3 preprogrammed tests, 6 free programmable methods, % inhibition, % stimulation, RLU
Cuvettes 12 mm OD
2000 results
Backlit graphic display (128 x 64 pixel)
Foil covered push buttons
DE/EN
USB interface for data transfer to the PC or printer
15 °C–30 °C
Mains adaptor: 230 V/50 Hz, 115 V/60 Hz, batteries
3 Rechargeable batteries: NiCd R14/C/Baby/UM2 batteries; 1600 mAh
170 mm x 150 mm x 280 mm
2 kg (incl. batteries)
2 years

Mobile mini-labs

Reagent cases

Reagent cases for special applications	160
Reagent cases for individual solutions	164
Accessories for reagent cases	166

Compact laboratories for mobile analysis

MACHEREY-NAGEL reagent cases are flexible tools for all areas of water and soil analysis. Catering to our customer needs, we offer a large number of prepacked reagent cases with and without photometer which can be used for a wide area of applications.

The rugged cases with premium foam inlays allow a fast and direct analysis at the point of interest. All needed test instructions as well as analytical accessories are already included for especially easy and convenient handling. Particular chemical knowledge or experience is not required to run any of the tests or to use the cases effectively. The color-coded bottles prevent a mixing-up of the reagents.

Consumed reagents can be replaced simple and cost-effective with refill packs.

Reagent cases for water analysis

The reagent cases together with the VISOCOLOR® tests give water attendants, fish farmers and other persons that are interested in water analysis the possibility to determine important analytical values for evaluation of water quality within a short time.

The prepacked reagent cases can be used for a wide area of applications like swimming pools, drinking water analysis, schools, monitoring of fishing waters and of course for general water analysis.

Good to know

The VISOCOLOR® School reagent case is especially designed for schools. All reagents are approved to be used in schools in Germany (GUV-SR 2004

Ordering information

Reagent case	REF	Dimensions	Application	GHS	PF-3	PF-12 ^{Plus}	Test
■ VISOCOLOR® ECO Reagent case	931301	340 x 275 x 83 mm	General				VISOCOLOR® ECO Ammonium 3 VISOCOLOR® ECO Carbonate hardness VISOCOLOR® ECO Total hardness VISOCOLOR® ECO Nitrate VISOCOLOR® ECO Nitrite VISOCOLOR® ECO PH 4.0–9.0 VISOCOLOR® ECO Phosphate
■ VISOCOLOR® Reagent case	931304	450 x 360 x 140 mm	General				VISOCOLOR® ECO Ammonium 3 VISOCOLOR® ECO Nitrite VISOCOLOR® ECO pH 4.0-9.0 VISOCOLOR® ECO Phosphate VISOCOLOR® HE Alkalinity AL 7 VISOCOLOR® HE Total hardness H 20 F VISOCOLOR® HE Oxygen SA 10
■ VISOCOLOR® Reagent case for environmental analysis	914353	450 x 360 x 140 mm	General	•		•	VISOCOLOR® ECO Ammonium 15 VISOCOLOR® ECO Iron 2 VISOCOLOR® ECO Nitrate VISOCOLOR® ECO Nitrite VISOCOLOR® ECO PH 4.0-9.0 VISOCOLOR® ECO Phosphate VISOCOLOR® HE Carbonate hardness C 20 VISOCOLOR® HE Total hardness H 20 F
■ VISOCOLOR® Reagent case with PF-3 Pool (Cl₂ liquid)	934118	340 x 275 x 83 mm	Swimming pool	•	-		VISOCOLOR® ECO Alkalinity TA VISOCOLOR® ECO Chlorine 2, free + total VISOCOLOR® ECO Cyanuric acid VISOCOLOR® ECO pH 6.0-8.2
■ VISOCOLOR® Reagent case with PF-3 Pool (Cl₂ solid)	934119	340 x 275 x 83 mm	Swimming pool	•	•		VISOCOLOR® ECO Alkalinity TA VISOCOLOR® ECO Chlorine 6, free + total VISOCOLOR® ECO Cyanuric acid VISOCOLOR® ECO pH 6.0-8.2

GHS: Global harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

Reagent cases for soil analysis

Thorough analysis is the basis to support and maintain healthy, productive and biologically active soil. To effectively and efficiently plan all measures that affect the soil (fertilization, liming, etc.) it is crucial to determine the important soil parameters first.

The VISOCOLOR® reagent cases for soil analysis are the perfect companions for economical, fast and convenient soil analysis, both in the field or in the laboratory. The user can choose between a reagent case version with or without compact photometer PF-3 Soil, which was especially developed for soil analysis.

Both case versions contain additional analytical tools, such as scale, sieve, etc. as well as predosed solutions for the production of necessary soil extracts.

Good to know

The reagent cases VISOCOLOR® School, VISOCOLOR® Fish and the VISOCOLOR® reagent case for soil analysis contain detailed manuals. Besides further background information about the most important parameters also information about reaction equations and of the reaction basis are included.

Measuring range (visual)	Measuring range (photometric)	Number of tests	Reagent cases
$0\cdot0.2\cdot0.3\cdot0.5\cdot0.7\cdot1\cdot2\cdot3~\text{mg/L NH}_{\text{4}}^{+}$	_	50	VISOCOLOR® ECO
1 drop equals 1.25 °e	_	100	Reagent case
1 drop equals 1.25 °e	_	110	
$0 \cdot 1 \cdot 3 \cdot 5 \cdot 10 \cdot 20 \cdot 30 \cdot 50 \cdot 70 \cdot 90 \cdot 120 \text{mg/L NO}_3^-$	_	110	
$0 \cdot 0.02 \cdot 0.03 \cdot 0.05 \cdot 0.07 \cdot 0.1 \cdot 0.2 \cdot 0.3 \cdot 0.5 \text{ mg/L NO}_2^-$	_	120	
pH: 4.0 · 5.0 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	_	450	
$0 \cdot 0.2 \cdot 0.3 \cdot 0.5 \cdot 0.7 \cdot 1 \cdot 2 \cdot 3 \cdot 5 \text{ mg/L PO}_4\text{-P}$	_	80	
$0\cdot0.2\cdot0.3\cdot0.5\cdot0.7\cdot1\cdot2\cdot3$ mg/L NH ₄ +	-	50	VISOCOLOR®
$0 \cdot 0.02 \cdot 0.03 \cdot 0.05 \cdot 0.07 \cdot 0.1 \cdot 0.2 \cdot 0.3 \cdot 0.5 \text{mg/L NO}_2^-$	-	120	Reagent case
pH: 4.0 · 5.0 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	_	450	
$0 \cdot 0.2 \cdot 0.3 \cdot 0.5 \cdot 0.7 \cdot 1 \cdot 2 \cdot 3 \cdot 5$ mg/L PO ₄ -P	_	80	
0.2–7.2 mmol/L OH ⁻ (1 syringe filling)	-	200	
$0.6-25.0 ^{\circ}\text{e}/0-3.6 \text{ mmol/L Ca}^{2+}$ (1 syringe filling)	-	200	
0–10.0 mg/L O ₂ (1 syringe filling)	-	100	
-	$0.5 - 8.0 \; \text{mg/L NH}_4^+$	50	VISOCOLOR®
-	0.04–2.00 mg/L Fe	100	Reagent case for environ-
-	4–60 mg/L NO ₃ ⁻	110	mental analysis
-	$0.02-0.50 \text{ mg/L NO}_2^-$	120	
pH: 4.0 · 5.0 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	_	450	
-	0.2-5.0 mg/L PO ₄ -P	80	
$0.6-25.0 ^{\circ}\text{e}/0-7.2 \text{ mmol/L H}^{+}$ (1 syringe filling)	-	200	
0.6–25.0 °e/0–3.6 mmol/L Ca ²⁺ (1 syringe filling)	-	200	
-	0.4-17.5 °e/5-250 mg/L CaCO ₃	100	VISOCOLOR®
-	0.10-2.00 mg/L Cl ₂	150	Reagent case with PF-3
-	10-100 mg/L Cya	100	Pool (Cl ₂ liquid)
-	pH 6.1-8.4	150	
-	0.4-17.5 °e/5-250 mg/L CaCO ₃	100	VISOCOLOR®
-	0.05-6.00 mg/L Cl ₂	200	Reagent case with PF-3
=	10-100 mg/L Cya	100	Pool (Cl ₂ solid)
-	pH 6.1-8.4	150	

Reagent case	REF	Dimensions	Application	GHS	PF-3	PF-12 ^{Plus}	Test
■ VISOCOLOR® Reagent case with PF-3 Drinking Water (Cl₂ liquid)	934124	340 x 275 x 83 mm	Drinking water	•	•		VISOCOLOR® ECO Chlorine 2, free + total VISOCOLOR® ECO Chlorine dioxide VISOCOLOR® ECO Iron 2 VISOCOLOR® ECO Fluoride VISOCOLOR® ECO pH 6.0–8.2
■ VISOCOLOR® Reagent case with PF-3 Drinking Water (Cl₂ solid)	934125	340 x 275 x 83 mm	Drinking water	•	•		VISOCOLOR® ECO Chlorine 6, free + total VISOCOLOR® ECO Chlorine dioxide VISOCOLOR® ECO Iron 2 VISOCOLOR® ECO Fluoride VISOCOLOR® ECO pH 6.0–8.2
Reagent case VISOCOLOR® School	933100	275 x 230 x 83 mm	Schools	•			VISOCOLOR® School Ammonium VISOCOLOR® School Total hardness VISOCOLOR® School Nitrate VISOCOLOR® School Nitrite VISOCOLOR® School pH 4.0–9.0 VISOCOLOR® School Phosphate
Reagent case VISOCOLOR® Fish	933101	275 x 230 x 83 mm	Fishing waters	•			VISOCOLOR® Fish Ammonium VISOCOLOR® Fish Total hardness VISOCOLOR® Fish Nitrate VISOCOLOR® Fish Nitrite VISOCOLOR® Fish pH 4.0–9.0 VISOCOLOR® Fish Phosphate
Reagent case VISOCOLOR® Fish with PF-3 Fish	934127	395 x 295 x 106 mm	Fishing waters	•	•		QUANTOFIX® Chloride QUANTOFIX® Multi-stick for aquarium owners VISOCOLOR® ECO Ammonium 3 VISOCOLOR® ECO Chlorine 6, free + total VISOCOLOR® ECO Iron 2 VISOCOLOR® ECO Silica VISOCOLOR® ECO Copper VISOCOLOR® ECO Nitrate VISOCOLOR® ECO Nitrite VISOCOLOR® ECO PH 6.0-8.2 VISOCOLOR® ECO Phosphate VISOCOLOR® ECO Oxygen VISOCOLOR® HE Alkalinity AL 7 VISOCOLOR® HE Phosphate
■ VISOCOLOR® Reagent case for soil analysis, with accessories	931601	500 x 420 x 175 mm	Soil	•			pH-Fix 2.0–9.0 QUANTOFIX® Ammonium QUANTOFIX® Nitrate/Nitrite VISOCOLOR® ECO Potassium VISOCOLOR® HE pH 4.0–10.0 VISOCOLOR® HE Phosphate
■ VISOCOLOR® Reagent case for soil analysis with PF-3 Soil, with accessories	934220	500 x 420 x 175 mm	Soil	•	•		pH-Fix 2.0–9.0 QUANTOFIX® Nitrate/Nitrite VISOCOLOR® ECO Ammonium 3 VISOCOLOR® ECO Potassium VISOCOLOR® ECO Nitrate VISOCOLOR® ECO Phosphate
■ VISOCOLOR® Reagent case for soil analysis with PF-3 Soil	934210	340 x 275 x 83 mm	Soil	•	•		VISOCOLOR® ECO Ammonium 3 VISOCOLOR® ECO Potassium VISOCOLOR® ECO Nitrate VISOCOLOR® ECO Phosphate

Measuring range (visual)	Measuring range (photometric)	Number of tests	Reagent cases
-	0.10–2.00 mg/L Cl ₂	150	VISOCOLOR®
-	0.20-3.80 mg/L CIO ₂	150	Reagent case with PF-3
-	0.04–2.00 mg/L Fe	100	Drinking Water (Cl ₂ liquid
-	0.1–2.0 mg/L F ⁻ pH 6.1–8.4	150 150	
	<u> </u>		
	0.05–6.00 mg/L Cl ₂ 0.20–3.80 mg/L CIO ₂	200 150	VISOCOLOR® Reagent case with PF-3
	0.04–2.00 mg/L Fe	100	Drinking Water (Cl ₂ solid)
_	0.1–2.0 mg/L F ⁻	150	Drinking Water (Oiz 3011a)
-	pH 6.1–8.4	150	
0 · 0.2 · 0.5 · 1 · 3 mg/L NH ₄ +		50	Reagent case
1 drop equals 1.25 °e	_	50	VISOCOLOR® School
0 · 1 · 5 · 10 · 20 · 50 · 90 mg/L NO ₃ ⁻	_	50	
$0 \cdot 0.02 \cdot 0.05 \cdot 0.1 \cdot 0.2 \cdot 0.5 \text{ mg/L NO}_2^-$	_	50	
pH: 4.0 · 5.0 · 6.0 · 7.0 · 8.0 · 9.0	-	50	
$0 \cdot 0.5 \cdot 1.5 \cdot 3 \cdot 6 \cdot 15 \text{ mg/L PO}_4^{3-}$	_	50	
0 · 0.2 · 0.5 · 1 · 3 mg/L NH ₄ +	-	50	Reagent case
1 drop equals 1.25 °e	-	50	VISOCOLOR® Fish
$0 \cdot 1 \cdot 5 \cdot 10 \cdot 20 \cdot 50 \cdot 90 \text{ mg/L NO}_3^-$	_	50	
0 · 0.02 · 0.05 · 0.1 · 0.2 · 0.5 mg/L NO ₂ ⁻	_	50	
pH: $4.0 \cdot 5.0 \cdot 6.0 \cdot 7.0 \cdot 8.0 \cdot 9.0$ $0 \cdot 0.5 \cdot 1.5 \cdot 3 \cdot 6 \cdot 15 \text{ mg/L PO}_{4}^{3-}$	_	50 50	
0 · 500 · 1000 · 1500 · 2000 · ≥ 3000 mg/L Cl ⁻	_	100	Reagent case
Total hardness: 0 · 6.3 · 12.5 · 18.8 · 25.0 · 31.3 °e Carbonate hardness: 0 · 3.8 · 7.5 · 12.5 · 18.8 · 25.0 °e	_	100 100	VISOCOLOR® Fish with PF-3 Fish
pH: 6.4 · 6.8 · 7.2 · 7.6 · 8.0 · 8.4	_	100	PT-3 FISH
-	0.1–2.5 mg/L NH ₄ +	50	
_	0.05–6.00 mg/L Cl ₂	200	
-	0.04–2.00 mg/L Fe	100	
-	0.2-3.0 mg/L SiO ₂	80	
-	0.1–5.0 mg/L Cu ²⁺	100	
-	4–60 mg/L NO ₃ ⁻	110	
=	0.02–0.50 mg/L NO ₂ ⁻	120	
-	pH 6.1–8.4	100	
-	0.2–5.0 mg/L PO ₄ -P	80 50	
- 0.2–7.2 mmol/L OH ⁻ (1 syringe filling)	1–8 mg/L O ₂	50 200	
0.0 · 0.05 · 0.10 · 0.15 · 0.20 · 0.3 · 0.4 · 0.6 · 0.8 · 1.0 mg/L PO ₄ -P	_	300	
 pH: 2.0 · 2.5 · 3.0 · 3.5 · 4.0 · 4.5 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	=	100	VISOCOLOR®
0 · 10 · 25 · 50 · 100 · 200 · 400 mg/L NH ₄ ⁺	_	100	Reagent case for soil
Nitrate: 0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L NO ₃ ⁻	_	100	analysis, with accessorie
Nitrite: $0 \cdot 1 \cdot 5 \cdot 10 \cdot 20 \cdot 40 \cdot 80 \text{ mg/L NO}_2^-$	-	100	-
$2\cdot 3\cdot 4\cdot 6\cdot 8\cdot 10\cdot 15 \text{ mg/L K}^{\scriptscriptstyle +}$	-	60	
pH: 4.0 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0 · 10.0	-	500	
0.0 · 0.05 · 0.10 · 0.15 · 0.20 · 0.3 · 0.4 · 0.6 · 0.8 · 1.0 mg/L PO ₄ -P		100	
pH: 2.0 · 2.5 · 3.0 · 3.5 · 4.0 · 4.5 · 5.0 · 5.5 · 6.0 · 6.5 · 7.0 · 7.5 · 8.0 · 8.5 · 9.0	-	100	VISOCOLOR®
Nitrate: 0 · 10 · 25 · 50 · 100 · 250 · 500 mg/L NO ₃ ⁻	_	100	Reagent case for soil
Nitrite: 0 · 1 · 5 · 10 · 20 · 40 · 80 mg/L NO ₂ -	– 0.1–2.5 mg/L NH ₄ +	100 50	analysis with PF-3 Soil, with accessories
	0.1-2.5 mg/L NH ₄ * 2-25 mg/L K ⁺	60	WILLI ACCESSOTIES
_	4–60 mg/L NO ₃ -	110	
-	0.2–5.0 mg/L PO ₄ -P	80	
 -	0.1-2.5 mg/L NH ₄ +	50	VISOCOLOR®
_	2–25 mg/L K ⁺	60	Reagent case for soil
-	4–60 mg/L NO ₃ ⁻	110	analysis with PF-3 Soil
	0.2–5.0 mg/L PO ₄ –P	80	

Reagent cases www.mn-net.com www.mn-net.com

Reagent cases for individual solutions

Compact laboratories for mobile analysis

With our reagent case program we also fulfill individual customer requests. The user can choose between reagent case versions with tests for visual evaluation and possible combinations with the compact photometers PF-3 and PF-12 $^{\!\!Plus}$.

The reagent cases for individual solutions offer a flexible combination of all VISOCOLOR® tests, pH-indicator papers, pH-Fix indicator strips, qualitative test papers and semi-quantitative QUANTOFIX® test strips as well as useful accessories.

The NANOCOLOR® reagent cases can also be equipped with NANOCOLOR® tube tests and the heating blocks NANOCOLOR® VARIO C2, NANOCOLOR® VARIO C2 M and NANOCOLOR® VARIO Mini.

Therefore, the reagent cases for individual solutions are versatilely applicable in a variety of areas in water and waste water analysis.

Good to know

Starting at a minimum quantity of 50 cases, we offer entirely individual solutions in different sizes with a foam inlay designed exactly to the customers specifications and needs.

Good to know

For questions about individual solution of the reagent cases, we are pleased to be of service.

\sim			
()rc	lerina	information	

			1000	PHI LAT	PRIO LARY	00 VO	150 NEO) ^v
Reagent case	REF	Dimensions	HARY	HE YAL	bri Yall	SERIO PLANT	De /120	
Test paper analysis case	913990	280 x 220 x 80 mm						
■ VISOCOLOR® ECO Reagent case	931303	340 x 275 x 83 mm						
■ VISOCOLOR® Reagent case	931305	450 x 360 x 140 mm						
■ VISOCOLOR® Reagent case with PF-3 Pool	934102	340 x 275 x 83 mm						
■ VISOCOLOR® Reagent case with PF-3 Drinking Water	934402	340 x 275 x 83 mm						
■ VISOCOLOR® Reagent case with PF-3 Soil	934202	340 x 275 x 83 mm						
■ VISOCOLOR® Reagent case with PF-3 Fish	934602	340 x 275 x 83 mm						
■ VISOCOLOR® Reagent case with PF-12 ^{Plus}	914351	450 x 360 x 140 mm						
■ NANOCOLOR® Reagent case with PF-3 COD	919212	534 x 427 x 207 mm						
■ NANOCOLOR® Reagent case with PF-12 ^{Plus}	919214	534 x 427 x 207 mm	-					

Reagent cases for individual solutions

NEOCO	New Properties	OR SHE'T	Ottor.	ON Hidical	J. Dade	John John John John John John John John	P DE	Original Constitution of the Constitution of t	original ori	QUE QUE	Les Les Land
											Test paper analysis case
											VISOCOLOR® ECO Reagent case
											VISOCOLOR® Reagent case
											VISOCOLOR® Reagent case with PF-3 Pool
											VISOCOLOR® Reagent case with PF-3 Drinking Water
											VISOCOLOR® Reagent case with PF-3 Soil
											VISOCOLOR® Reagent case with PF-3 Fish
											VISOCOLOR® Reagent case with PF-12 ^{Plus}
											NANOCOLOR® Reagent case with PF-3 COD
											NANOCOLOR® Reagent case with PF-12Plus

Accessories for reagent cases

The complete analysis from one source

The MACHEREY-NAGEL reagent cases are perfectly suited for mobile analysis. With our wide range of accessories they can be refilled quickly and easily.

Good to know

For general accessories for the VISOCOLOR® reagent cases see page 84

Ordering information

Description	REF	Content	GHS
Accessories for Reagent case VISOCOLOR® School			
■ VISOCOLOR® School refill pack	933200	1 piece	
■ VISOCOLOR® School color scale	933300	1 piece	
■ VISOCOLOR® School manual	933150	1 piece	
Accessories for Reagent case VISOCOLOR® Fish			
■ VISOCOLOR® Fish refill pack	933201	1 piece	
■ VISOCOLOR® Fish color scale	933301	1 piece	
■ VISOCOLOR® Fish manual for reagent case VISOCOLOR® Fish	933151	1 piece	
■ VISOCOLOR® Fish manual for reagent case VISOCOLOR® Fish with PF-3 Fish	933161	1 piece	
Accessories for VISOCOLOR® Reagent cases for soil analysis			
■ 100 mL CaCl ₂ stock solution	914612	3 pieces	
■ 100 mL CAL stock solution	914614	4 pieces	
Reagent set VISOCOLOR® HE Phosphorus in soil	920183	1 piece	
Color chart VISOCOLOR® HE Phosphorus in soil	920383	1 piece	
■ 30 mL pyrophosphate solution	914611	3 pieces	
■ Folded filters MN 616 1/4, 18.5 cm Ø	532018	100 pieces	
Soil sieve (2 mm mesh size)	914650	1 piece	
Plastic bottle 500 mL with spraying attachment	91689	1 piece	
■ Balance 250 g	914651	1 piece	
Sample beaker 250 mL	914652	5 pieces	
■ Wide neck bottles 500 mL for soil samples	914653	5 pieces	
Shaking bottle 300 mL	914654	5 pieces	
■ Measuring cylinder 100 mL with base	914655	2 pieces	
■ Plastic scoop	914656	1 piece	
■ Funnel 80 mm Ø, plastic	914657	3 pieces	
Sedimentation tubes with screw caps	914659	2 pieces	
Syringe 10 mL with tube	914660	1 piece	
■ Manual for VISOCOLOR® Reagent cases for soils analysis	914602	1 piece	
■ Thermometer -10 °C to +60 °C	914497	1 piece	

GHS: Global harmonized system: This product contains harmful substances which must be specially labeled as hazardous. For detailed information please see the SDS.

NANOCOLOR® Reagent case Mobile analysis for sewage plants

Mobile photometric analysis

- Compact photometer PF-12^{Plus} for flexible analysis
- Heating block NANOCOLOR® VARIO C2 for fast sample digestions
- Highest transport safety due to robust case
- Tube tests for precise results

REF	Page
90201	57
90202	57
90203	57
90204	57
90205	57
90206	57
90207	57
90208	57
90209	57
90210	57
90211	57
90212	57
90213	57
90214	57
90224	57
90225	57
90226	57
90227	57
90228	57
90229	57
90230	57
90231	57
90232	57
90233	57
90234	57
90301	58
90302	58
90303	58
90304	58
90305	58
90306	58
90311	58
90312	58
90313	58
90314	58
90315	58
90316	58
90401	56
90411	56
90412	56
90413	56
90414	56
90415	56
90416	56
90417	56

REF	Page
90419	56
90420	56
90421	56
90422	56
90423	56
90424	56
90501	58
90502	58
90510	58
90511	58
90601	31, 68
90602	36, 70
90603	26, 28, 68
90604	31, 68
90605	26, 41, 70
90606	41, 70
90607	42, 70
90608	27, 66
90609	48, 70
90610	48, 70
90611	38, 39, 68
90612	42, 70
90627	41, 70
90630	48, 70
90701	59
90702	59
90703	59
90704	59
90705	59
90709	28, 66
90710	31, 66
90711	59
90712	59
90713	59
90714	24, 66
90721	23, 49, 68, 70
90722	24, 68
90723	24, 68
90724	29, 68
90725	35, 68
90726	35, 68
90727	43, 70
90728	29, 68
90729	31, 68
90730	37, 68

REF	Page
90732	45, 70
90733	26, 68
90734	33, 66
90736	40, 66
90741	45, 66
90744	
	46, 68
90745	46, 68
90746	46, 68
90747	26, 70
90748	37, 70
90750	33, 68
90751	32, 68
90752	23, 28, 66
90753	70
90754	28, 39, 40, 46, 70
90755	28, 39, 40, 46, 70
90756	28, 39, 40, 46, 70
90758	28, 39, 40, 46, 70
90759	23, 28, 34, 66
90760	35, 68
90761	46, 70
90762	25, 68
90763	46, 70
90765	44, 68
90801	22, 66
91002	59
91031	59
91039	59
91106	59
91107	59
91108	59
91116	59
91117	59
91118	59
91126	59
91127	59
91128	59
91201	34, 66
91220	34, 66
91221	34, 66
91222	34, 66
91223	34, 66
91224	34, 66
-	, - -

REF	Page
91239	34, 66
91240	34, 66
91243	34, 66
91301	29, 62
91303	29, 62
91304	31, 62
91305	37, 62
91306	46, 64
91307	23, 62
91309	47, 64
91310	49, 64
91311	39, 62
91312	41, 64
91313	38, 39, 62
91314	25, 62
91315	24, 62
91316	43, 64
91317	28, 62
91318	31, 62
91319	41, 64
91320	42, 64
91321	27, 62
91322	39, 62
91323	23, 34, 62
91324	27, 62
91325	37, 62
91326	25, 34, 64
91327	25, 34, 64
91328	33, 62
91329	45, 64
91330	35, 64
91332	25, 62
91333	41, 64
91334	25, 62
91335	32, 62
91336	23, 30, 62
91337	44, 64
91338	30, 39, 62
91339	28, 62
91340	41, 62
91341	41, 62
91342	41, 64
91343	33, 62
91344	35, 64
91345	25, 62

REF	Page
91345.2	25, 62
91348	33, 62
91349	22, 40, 62
91350	45, 64
91351	38, 62
91352	
	47, 64
91353	64
91354	28, 62
91355	29, 62
91356	42, 64
91357	29
91358	31, 62
91359	35, 62
91360	28, 62
91601	112
91602	112
91603	113
91604	114
91605	114
91606	114
91608	113
91609	113
91610	111
91620	112
91621	114
91622	152
91623	112, 114
91629	111, 152
91637	113
91638	112
91639	112
91642	112
91650	112
91652	112, 119
91653	112
91658	113
91661	112
91664	113
91665	112
91666	152
91667	152
91668	152
91671	112
91672	112
91676	112, 113

	_
REF	Page
91677	113
91679	113
91680	84, 142, 152
91681	112
91682	112
91683	112
91684	112
91688	112
91689	112, 166
91690	112
91695	113, 119
91696	112
91802	23, 100
91805	24, 100
91808	111
91816	28, 100
91820	27, 100
91825	29, 100
91830	31, 100
91832	46, 100
91834	46, 100
91836	35, 100
91844	35, 100
91848	44, 100
91850	111
91851	29, 100
91853	31, 100
91860	36, 100
91862	37, 100
91863	38, 100
91865	38, 100
91867	39, 100
91872	43, 94, 113
91875	41, 100
91877	42, 100
91878	42, 100
91885	40, 100
91888	46, 100
91895	49, 100
91902	142
91906	143
91916	142
91918	142
91932	142
91933	142

	11 10107 (<u> </u>
REF	Page	
91934	142	
91935	142	
91937	142	
91940	142	
91941	142	
91950	142	
92110	54	
92111	54	
92115	54	
92118	54	
92120	54	
92121	54	
92122	54	
92123	54	
92125	54	
92130	54	
92131	54	
92135	54	
92137	54	
92140	54	
92150	54	
92160	54	
92170	54	
92180	54	
92190	54	
92507	106	
92517	106	
92522	106	
92524	106	
92526	106	
92528	106	
92529	106	
92562	106	
92568	106	
92575	106	
92576	106	
92578	106	
92582	106	
92590	106	
93065	154	
93074	154	
205015	112	
470011	112	
532018	166	
645008	114	

Page
113
66
66
44
34, 66
64
164
164
160
84
84
84
84
84, 166
84
166
166
166
166
166
166
166
166
166
166
166
166
166
166
84
84
84, 140
34, 80
23, 34, 80
27, 80
34, 80
22, 80
23, 80
32, 46, 80
40, 80
27, 80
80
80
80
80

REF	Page
915206	80
915207	80
915208	80
915209	80
915210	80
915498	84
9154	84
915499	84
916111	113
916113	113
916114	112
916115	113
916211	112
916212	112
916511	112
916513	112
916598	152
916908	141
916909	113
916910	152
916912	121, 156
916914	113
916915	112, 113
916916	113
916917	113
916918	113
916919	113
916920	113
916925	113
916926	113
916930	141
916993	114, 138
916994	114
916995	114
916996	114
918045	114
918073	113
918101	36, 100
918126	36, 100
918128	35, 100
918131	27, 100
918142	33, 100
918163	29, 100
918571	113
918572	113
	-

REF	Page
918911	113
918912	114
918929	114
918932	114
918937	114
918939	114
918973	114
918978	111
918979	111
918993	113
918994	113
918995	113
919119	142
919120	142
919121	142
919122	142
919123	142
919127	141
919134	141
919136	142
919143	141
919149	141
919156	142, 152
919158	141
919180	139, 141
919181	141
919182	141
919201	143
919212	164
919214	164
919220	143
919221	143
919250	12, 132
919252	141
919300	14, 145
919309	152
919310	152
919311	152
919312	152
919330	14, 149
919340	12, 136
919341	12, 136
919342	12, 136
919343	12, 136
	-

REF	Page
919350	14, 145
919350.1	14, 145
919380	14, 147
919381	152
919383	152
919390	142, 152
919391	143
919392	141
919600	12
919600.1	127
919601	141
919603	141
919604	141
919605	142
919606	142
919624	141
919626	141
919650	12
919650.1	127
919651	142
919652	141
919654	142
919655	142
919656	142
919681	142
919682	142
919686	142
919687	142, 152
919750	12, 130
919751	142
919752	142
919753	142
919754	141
919757	141
919759	141
919773	142
919787	141
919841.2	141
919850.2	141
919916	152
919917	151
919921	151
919924	152
919925	152
919926	152

REF	Page
919937	152
919938	152
920006	24, 80
920015	28, 80
920028	31, 80
920040	35, 80
920050	31, 80
920055	36, 80
920063	39, 80
920074	43, 80
920080	42, 80
920082	42, 80
920087	44, 80
920106	80
920115	80
920128	80
920140	80
920150	80
920155	80
920163	80
920174	80
920180	80
920182	80
920183	166
920187	80
920383	166
9203	84
920401	84
920402	84
925010	106
925011	106
925012	106
925013	108
925015	108
925016	108
925018	108
925702	140
925703	140
930889	154
930995	114, 154
931006	23, 76
931008	24, 76
931010	24, 76
931012	27, 36, 76
931014	23, 34, 76

919345

12, 136

REF	Page
931015	28, 78
931016	28, 78
931018	27, 76
931020	29, 78
931021	29, 78
931022	31, 78
931023	31, 78
931024	32, 78
931025	35, 78
931026	35
931029	34, 36, 78
931030	35, 78
931032	43, 78
931033	44, 78
931035	28, 78
931037	31, 78
931038	36, 78
931040	37, 78
931041	38, 78
931044	39, 78
931050	46, 78
931051	46, 78
931066	43, 78
931084	42, 78
931088	40, 78
931090	28, 78
931092	45, 78
931094	46, 78
931095	46, 78
931098	49, 78
931151	84
931152	84
931204	23, 76
931206	76
931208	76
931210	76
931211	26, 76
931215	78
931216	78
931217	28, 78
931218	76
931219	28, 78
931220	78
931221	78
931222	78

REF	Page
931223	78
931224	78
931225	78
931226	78
931227	33, 78
931230	78
931232	78
931233	78
931234	44, 78
931235	78
931237	78
931238	78
931240	78
931241	78
931244	78
931250	78
931251	78
931266	78
931270	43, 78
931284	78
931288	78
931290	78
931292	78
931294	78
931298	78
931301	160
931303	164
931304	160
931305	164
931501	84
931502	84
931503	84, 141
931601	162
931929	84
933100	162
933101	162
933150	166
933151	166
933161	166
933200	166
933201	166
933300	166
933301	166
934001	84, 141
934102	164

REF	Page
934118	160
934119	160
934124	162
934125	162
934127	162
934202	164
934210	162
934220	162
934402	164
934602	164
935012	24, 74
935016	23, 34, 74
935019	28, 74
935042	34, 74
935065	38, 74
935066	39, 74
935075	43, 74
935079	42, 74
935080	34, 74
936101	84, 142
936220	28, 82
936220.1	28, 82
936221	28, 40, 82
936221.1	28, 40, 82
936222	43, 82
936223	45, 82
936224	44, 82
936225	44, 82
936226	38, 82
936227	35, 82
936228	42, 82
936229	24, 82
936230	39, 82
940006	121, 156
940008	156
940009	156
940014	156
945002	120
945003	120
945006	120
945007	120
945013	121, 156
945021	120
945022	120
945023	120

REF	Page
945024	120
945025	120
945601	121
945602	121
945603	121
945604	121
945608	121
963026	30, 90
963029	30, 90
963911	113
970001	39, 119
970002	39, 119
970101	119
970111	119
970112	119
970113	119
970114	119
970115	119
970116	119
970902	119
970903	119
976003	24, 102
985001	49, 94
985002	24, 90
985003	24, 90
985004	24, 90
985005	24, 90
985006	24, 90
985007	24, 90
985008	24, 90
985009	36, 92
985011	30, 90
985012	30, 90
985014	27, 90
985015	23, 34, 90
985017	28, 40, 90
985018	29, 90
985019	27, 90
985020	30, 90
985021	27, 90
985022	30, 90
985023	30, 90
985024	29, 90
985025	31, 92
985026	30, 90

REF	Page
985027	30, 90
985028	30, 90
985029	30, 90
985030	30, 90
985031	31, 92
985032	46, 94
985033	30, 90
985034	46, 94
985035	32, 92
985036	30, 90
985037	35, 92
985038	30, 92
985040	33, 92
985041	33, 92
985042	49
985043	27, 34, 36, 92
985044	27, 34, 36, 92
985045	43, 94
985046	33, 92
985047	46, 94
985049	45, 94
985050	40, 92
985052	32, 92
985053	31, 92

REF	Page
985055	42, 94
985056	37, 92
985057	35, 92
985058	36, 92
985059	29, 90
985060	45, 94
985062	45, 94
985063	45, 94
985064	38, 92
985065	38, 92
985066	38, 92
985067	39, 92
985068	39, 92
985069	39, 92
985070	43, 94
985071	37, 92
985073	46, 94
985074	41, 94
985075	47, 94
985076	42, 94
985078	47, 94
985079	42, 94
985080	42, 94
985081	42, 94

REF	Page
985082	40, 92
985083	39, 92
985084	34, 94
985085	45, 94
985087	45, 94
985088	39, 92
985089	46, 94
985090	46, 94
985091	47, 94
985092	39, 92
985095	42, 94
985096	49, 94
985097	47, 94
985098	23, 90
985603	96
985605	96
985607	96
985619	96
985621	96
985622	96
985626	96
985628	96
985629	96
985630	96

REF	Page
985636	96
985650	96
985638	96
985657	96
985664	96
985665	96
985668	96
985669	96
985673	96
985674	96
985676	96
985680	96
985681	96
985683	96
985688	96
985822	26, 90
985825	26, 90
985838	32, 92
985859	37, 92
985871	41, 94
985890	45, 94

Image credits

Copyright	page
andrey7777777 - Fotolia	23
Angelika Möthrath - Fotolia	55
Bing_Somsak - Fotolia	153
Björn Wylezich - Fotolia	25
cosma - Fotolia	22
dedalo03 - Fotolia	49
Dmytro Sukharevskyy - Fotolia	37

Copyright	page
emer - Fotolia	43
euthymia - Fotolia	41
fotomaster - Fotolia	38
Marianne Mayer - Fotolia	85
M. Schuppich - Fotolia	31
nexusseven - Fotolia	28
olga demchishina - Fotolia	69

Copyright	page
tarasov_vl - Fotolia	115
Thomas Brostrom - Fotolia	49
Tim UR - Fotolia	47
trotzolga - Fotolia	34
Vitalii Hulai - Fotolia	43

Trademarks

MACHEREY-NAGEL	
AQUADUR®	
BioFix®	
CHROMABOND®	
CHROMAFIL®	

MACHEREY-NAGEL
NANOCOLOR®
PEHANON®
QUANTOFIX®
VISOCOLOR®

Other comapnys				
Ashland	Polystabil [®]			
Merck	HY-LiTE®			
Sigma-Aldrich	Triton®			

KATEN100003 Rapid Tests en16/3/0/06.2021 PD · Printed in Germany

Distributed by:

www.mn-net.com

MACHEREY-NAGEL

info@mn-net.com CH Tel.: +41 62 388 55 00 sales-ch@mn-net.com FR Tel.: +33 388 68 22 68 sales-fr@mn-net.com US Tel.: +1 888 321 62 24 sales-us@mn-net.com